Advertisement

Nanotechnologies in Russia

, Volume 14, Issue 3–4, pp 125–131 | Cite as

PHASE COMPOSITION STABILITY OF NANOSTRUCTURED COMPOSITE CERAMICS BASED ON CaO–ZrO2 UNDER HYDROTHERMAL IMPACT

  • A. A. DmitrievskiyEmail author
  • D. G. Zhigacheva
  • N. Yu. Efremova
  • A. V. Umrikhin
FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • 2 Downloads

Abstract

Structure, phase composition, and mechanical properties (microhardness within indenter penetration depths of 1200 nm ≤ h ≤ 6000 nm and fracture toughness) are studied on nanostructured zirconia ceramics (CaO stabilized) hardened with corundum and SiO2 during accelerated aging under hydrothermal conditions (Tag = 134°C, P = 3 atm, H = 100%, 0 ≤ tag ≤ 25 h). The use of CaO as a stabilizer of the zirconia tetragonal phase (instead of “conventional” Y2O3) promotes increasing resistance to hydrothermal effects of composite ZrO2 + Al2O3 and ZrO2 + Al2O3 + SiO2 ceramics. The reached fracture toughness (more than in 40%) via introduction of silica (\({{C}_{{{\text{Si}}{{{\text{O}}}_{2}}}}}\) = 5 mol %) increase provides a satisfactory hardness/fracture toughness (H = 12.3 GPa, KC = 6.66 MPa m1/2) ratio of the Ca–ZrO2 + Al2O3 + SiO2 composite ceramics even after its accelerated 25-h aging.

Notes

ACKNOWLEDGMENTS

The authors are grateful to A.O. Zhirachev for assisting in obtaining SEM images. This work was carried out using Shared Access Center of Derzhavin Tambov State University facilities.

FUNDING

The work was supported by the Ministry of Science and Education of the Russian Federation (project no. 16.2100.2017/4.6) and partially supported by the Russian Foundation for Basic Research (project no. 18-42-680001 r-a).

REFERENCES

  1. 1.
    R. C. Garvie, R. H. J. Hannink, and R. T. Pascoe, Nature (London, U.K.) 258, 703 (1975). www.nature.com/articles/258703a0.pdf.CrossRefGoogle Scholar
  2. 2.
    R. H. J. Hannink, P. M. Kelly, and B. C. Muddle, J. Am. Ceram. Soc. 83, 461 (2000).  https://doi.org/10.1111/j.1151-2916.2000.tb01221.x CrossRefGoogle Scholar
  3. 3.
    A. C. O. Lopes, P. G. Coelho, L. Witek, et al., Ceram. Int. 45, 8840 (2019).  https://doi.org/10.1016/j.ceramint.2019.01.211 CrossRefGoogle Scholar
  4. 4.
    A. O. Zhigachev, Yu. I. Golovin, A. V. Umrikhin, et al., Zirconia Dioxide Ceramic Materials (Tekhnosfera, Moscow, 2018) [in Russian].Google Scholar
  5. 5.
    A. G. Evans, J. Am. Ceram. Soc. 72, 187 (1990).  https://doi.org/10.1111/j.1151-2916.1990.tb06493.x CrossRefGoogle Scholar
  6. 6.
    M. H. Ghaemi, S. Reichert, A. Krupa, et al., Ceram. Int. 43, 9746 (2017).  https://doi.org/10.1016/j.ceramint.2017.04.150 CrossRefGoogle Scholar
  7. 7.
    A. Maji and G. Choubey, Mater. Today: Proc. 5, 7457 (2018).  https://doi.org/10.1016/j.matpr.2017.11.417 CrossRefGoogle Scholar
  8. 8.
    J.-K. Lee, M.-J. Kim, and E.-G. Lee, J. Mater. Sci. Lett. 21, 259 (2002).  https://doi.org/10.1023/A:1014737614591 CrossRefGoogle Scholar
  9. 9.
    F. Zhang, L.-F. Li, and E.-Z. Wang, Ceram. Int. 41, 12417 (2015).  https://doi.org/10.1016/j.ceramint.2015.06.081 CrossRefGoogle Scholar
  10. 10.
    A. A. Dmitrievskii, A. O. Zhigachev, D. G. Zhigacheva, and A. I. Tyurin, Tech. Phys. 64, 86 (2019).  https://doi.org/10.21883/JTF.2019.01.46970.102-18 CrossRefGoogle Scholar
  11. 11.
    A. O. Zhigachev, V. V. Rodaev, A. V. Umrikhin, and Yu. I. Golovin, Ceram. Int. 45, 627 (2019).  https://doi.org/10.1016/j.ceramint.2018.09.220 CrossRefGoogle Scholar
  12. 12.
    K. Kobayashi, H. Kuwajima, and T. Masaki, Solid State Ionics 3–4, 489 (1981).  https://doi.org/10.1016/0167-2738(81)90138-7 CrossRefGoogle Scholar
  13. 13.
    H. Schubert and F. Frey, J. Eur. Ceram. Soc. 25, 1597 (2005).  https://doi.org/10.1016/j.jeurceramsoc.2004.03.025 CrossRefGoogle Scholar
  14. 14.
    Y. Gaillard, E. Jimenez-Pique, F. Soldera, et al., Acta Mater. 56, 4206 (2008).  https://doi.org/10.1016/j.actamat.2008.04.050 CrossRefGoogle Scholar
  15. 15.
    J.-D. Lin, J.-G. Duh, and C.-L. Lo, Mater. Chem. Phys. 77, 1016 (2002).  https://doi.org/10.1016/S0254-0584(02)00161-X CrossRefGoogle Scholar
  16. 16.
    A. O. Zhigachev and Yu. I. Golovin, Nanotechnol. Russ. 12, 400 (2017). https://nanorf.elpub.ru/jour/article/view/12/11.CrossRefGoogle Scholar
  17. 17.
    A. A. Dmitrievskii, D. G. Zhigacheva, A. I. Tyurin, et al., in Proceedings of the International Symposium on Perspective Materials and Technologies, May 27–31,2019,Brest,Belorussiya. http://www.issp.ac.ru/ebooks/conf/Adv.mater_2019.pdf.Google Scholar
  18. 18.
    A. A. Dmitrievskii, A. I. Tyurin, A. O. Zhigachev, D. G. Guseva, and P. N. Ovchinnikov, Tech. Phys. Lett. 4, 141 (2018).  https://doi.org/10.21883/PJTF.2018.04.45635.16933 CrossRefGoogle Scholar
  19. 19.
    J. Chevalier, S. Deville, E. Münch, et al., Biomaterials 25, 5539 (2004).  https://doi.org/10.1016/j.biomaterials.2004.01.002 CrossRefGoogle Scholar
  20. 20.
    A. Moradkhani and H. Baharvandi, Eng. Fract. Mech. 191, 446 (2018).  https://doi.org/10.1016/j.engfracmech.2017.12.033 CrossRefGoogle Scholar
  21. 21.
    M. P. Albano, H. L. Calambás Pulgarin, L. B. Garrido, et al., Ceram. Int. 42, 11363 (2016).  https://doi.org/10.1016/j.ceramint.2016.04.063 CrossRefGoogle Scholar
  22. 22.
    T. Kosmač and A. Kocjan, J. Eur. Ceram. Soc. 32, 2613 (2012).  https://doi.org/10.1016/j.jeurceramsoc.2012.02.024 CrossRefGoogle Scholar
  23. 23.
    Yu. I. Golovin, Phys. Solid State 50, 2205 (2008). http://journals.ioffe.ru/articles/viewPDF/2862.CrossRefGoogle Scholar
  24. 24.
    A. O. Zhigachev, A. V. Umrikhin, and Yu. I. Golovin, Ceram. Int. 41, 13804 (2015).  https://doi.org/10.1016/j.ceramint.2015.08.063 CrossRefGoogle Scholar
  25. 25.
    M. L. Mecartney, J. Am. Ceram. Soc. 70, 54 (1987).  https://doi.org/10.1111/j.1151-2916.1987.tb04853.x CrossRefGoogle Scholar
  26. 26.
    L. Gremillard, J. Chevalier, T. Epicier, and G. Fantozzi, J. Am. Ceram. Soc. 85, 401 (2002).  https://doi.org/10.1111/j.1151-2916.2002.tb00103.x CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Dmitrievskiy
    • 1
    Email author
  • D. G. Zhigacheva
    • 1
  • N. Yu. Efremova
    • 1
  • A. V. Umrikhin
    • 1
  1. 1.Derzhavin Tambov State UniversityTambovRussia

Personalised recommendations