Advertisement

DETERMINATION OF THE STRUCTURE OF CARBON PARTICLES FORMED WHEN FORMING A POLYMER FILM IN A PLASMA CHEMICAL REACTOR

  • 11 Accesses

Abstract—We study the formation mechanism of carbon nanoparticles with simultaneous formation of a polystyrene film in a AC barrier corona discharge at atmospheric pressure. The importance of the research stems from the need to control the allotropic form of carbon nanoparticles, which affects the physical and technical characteristics of polymer films obtained by this method. It is shown that nucleation of polycrystalline onion-like carbon nanoparticle agglomerates is the basis for graphene flake formation in the corona sheath. Graphene flakes form from these nucleation sites in gas discharge streamers owing to the destruction of monomer molecules remaining in the agglomerates of nucleation sites. It was revealed that the allotropic form of such particles is determined not only by the energy—in this case the barrier corona discharge—but also by the ratio of the duration of its exposure to the characteristic destruction and formation times of covalent bonds participating in the particle process.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Rakesh Kumar, Polymer-Matrix Composites(Types, Applications, and Performance) (Nova Science, New York, 2014).

  2. 2

    Farzana Hussain and Mehdi Hojjati, “Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview,” J. Compos. Mater. 40, 1511 (2006).

  3. 3

    S. Zhandarov, E. Mader, Ch. Scheffler, et al., “Investigation of interfacial strength parameters in polymer matrix composites: compatibility and reproducibility,” Adv. Ind. Eng. Polym. Res., No. 1, 82 (2018).

  4. 4

    V. V. Chesnokov, A. S. Chichkan’, and V. N. Parmon, “Nanoporous ceramic membranes modified by carbon nanotubes used to separate gaseous mixtures,” Nanotechnol. Russ. 12, 165 (2017).

  5. 5

    I. A. Mansurova, O. Yu. Isupova, A. A. Burkov, A. A. Alalykin, S. V. Kondrashov, I. B. Shilov, and E. Yu. Kraeva, “Functionalization of 1D carbon nanostructures by components of curing system and their influence on the properties of the vulcanizates,” Nanotechnol. Russ. 11, 603 (2016).

  6. 6

    M. Y. Lone, A. Kumar, S. Husain, et al., “Growth of carbon nanotubes by PECVD and its applications: a review,” Curr. Nanosci. 13, 536 (2017).

  7. 7

    N. Arora and N. N. Sharma, “Arc discharge synthesis of carbon nanotubes: comprehensive review,” Diamond Relat. Mater. 50, 135 (2014).

  8. 8

    M. Moutab Sahihazar, M. Nouri, M. Rahmani, et al., “Fabrication of carbon nanoparticle strand under pulsed arc discharge,” Plasmonics 13, 2377 (2018).

  9. 9

    V. A. Ryzhkov, “Mechanism of carbon nanotube growth in arc-discharge,” Carbon—Sci. Tech., No. 1, 2 (2008).

  10. 10

    Muhammad Sufi Roslan, Misbahul Muneer Abd Rahma, et al., “Fullerene-to-MWCNT structural evolution synthesized by arc discharge plasma,” J. Carbon Res., No. 4, 1 (2018).

  11. 11

    E. A. Bogoslov, M. P. Danilaev, Yu. E. Pol’skii, et al., “Formation of polystyrene film in gas discharge plasma at atmospheric pressure,” Fiz. Khim. Obrab. Mater., No. 2, 23 (2016).

  12. 12

    G. Raniszewski, S. Wiak, L. Pietrzak, et al., “Influence of plasma jet temperature profiles in arc discharge methods of carbon nanotubes synthesis,” Nanomaterials (Basel) 7 (3) (2017). https://doi.org/10.3390/nano7030050

  13. 13

    O. Y. Bogomolova, I. R. Biktagirova, M. P. Danilaev, et al., “Effect of adhesion between submicron filler particles and a polymeric matrix on the structure and mechanical properties of epoxy-resin-based compositions,” Mech. Compos. Mater. 53, 117 (2017).

  14. 14

    R. Ghosh Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373 (2012).

  15. 15

    Q.-Y. Chen, J. Gao, K. Dai, et al., “Nonlinear current-voltage characteristics of conductive polyethylene composites with carbon black filled pet microfibrils,” Chin. J. Polym. Sci. 31, 211 (2013).

  16. 16

    G. Scordo, V. Bertana, L. Scaltrito, et al., “A novel highly electrically conductive composite resin for stereolithography,” Mater. Today Commun. 19, 12 (2019).

  17. 17

    N. Sano, H. Wang, I. Alexandrou, et al., “Properties of carbon onions produced by an arc discharge in water,” J. Appl. Phys. 92, 2783 (2002).

  18. 18

    R. Hu, M. A. Ciolan, X. Wang, et al., “Copper induced hollow carbon nanospheres by arc discharge method: controlled synthesis and formation mechanism,” Nanotechnology 27, 1 (2016).

  19. 19

    P. V. Borisoglebskii, L. F. Dmokhovskaya, V. P. Larionov, et al., High Voltage Technique (Gosenergoizdat, Moscow, 1963) [in Russian].

  20. 20

    G. N. Aleksandrov, V. V. Borisov, and G. S. Kaplan, Theory of Electrical Apparatus (SPbGTU, St. Petersburg, 2000) [in Russian].

  21. 21

    Graphene—Synthesis, Characterization, Properties, and Applications,  Ed. by Jian Ru Gong (InTech Janeza Trdine, Croatia, 2011).

  22. 22

    M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Dover, New York, 2009; Regulyar. Khaot. Dinamika, Izhevsk, 2005).

  23. 23

    B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982; Inst. Komp. Issled., Moscow, 2002).

  24. 24

    V. V. Afanas’ev, M. P. Danilaev, and Yu. E. Pol’skii, “Physical fractals, structures, modes,” Nelin. Mir, No. 2, 110 (2008).

  25. 25

    M. Szerencsi and G. Radnoczi, “The mechanism of growth and decay of carbon nano-onions formed by ordering of amorphous particles,” Vacuum 84, 197 (2010).

  26. 26

    J. F. Peter, “Harris transmission electron microscopy of carbon: a brief history,” J. Carbon Res., No. 4, 1 (2018).

  27. 27

    K. Bogdanov, F. Fedorov, V. Osipov, et al., “Annealing-induced structural changes of carbon onions: high-resolution transmission electron microscopy and Raman studies,” Carbon 73, 78 (2014).

  28. 28

    U. Müller, Symmetry Relationships between Crystal Structures. Applications of Crystallographic Group Theory in Crystal Chemistry (Oxford Univ. Press, UK, 2013).

  29. 29

    C. Meyer Jannik, A. K. Geim, M. I. Katsnelson, et al., “The structure of suspended grapheme sheets,” Nature (London, U.K.) 446 (7131), 60 (2007).

  30. 30

    V. E. Cosslett, “Recent progress in high voltage electron microscopy,” in Modern Diffraction and Imaging Techniques in Materials Science, Ed. by S. Amelinckx (North Holland, Amsterdam, 1970), p. 341.

  31. 31

    M. P. Danilaev, E. M. Zueva, E. A. Bogoslov, M. S. Pudovkin, and Yu. E. Pol’skii, “Formation mechanism of argon clathrates with carbon dendrites,” Tech. Phys. 63, 857 (2018).

  32. 32

    S. B. Afanas’ev, D. S. Lavrenyuk, I. N. Petrushenko, and Yu. K. Stishkov, “Peculiarities of the corona discharge in air,” Tech. Phys. 53, 848 (2008).

  33. 33

    D. Kozak, E. Shibata, A. Iizuka, and T. Nakamura, “Growth of carbon dendrites on cathode above liquid ethanol using surface plasma,” Carbon 70, 87 (2014).

  34. 34

    T. S. Kol’tsova, T. V. Larionova, N. N. Shusharina, and O. V. Tolochko, Tech. Phys. 60, 1214 (2015).

  35. 35

    K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, A. A. Tren’kin, and S. Yu. Kharitonov, “Investigation of spark discharge dynamics in an air-filled point-plane gap by shadow photography,” Tech. Phys. 64, 61 (2019).

  36. 36

    K. I. Almazova, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, A. A. Tren’kin, and S. Yu. Kharitonov, “Microstructure of a spark discharge in air in a point–plane gap,” Tech. Phys. 63, 801 (2018).

  37. 37

    Yu. K. Stishkov, A. V. Samusenko, and I. A. Ashikhmin, “Corona discharge and electrogasdynamic flows in the air,” Phys. Usp. 61, 1213 (2018).

  38. 38

    H. Haken, Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and Devices (Springer, Heidelberg, 1983).

  39. 39

    W. Ebeling, Origin of Structures at Irreversible Processes: Introduction in the Theory of Dissipative Structures (Rostock, 1977).

  40. 40

    I. Prigogine, The End of Certainty: Time, Chaos, and the New Laws of Nature (The Free Press, New York, 1997).

  41. 41

    O. G. Kiselev, A. B. Berezin, F. E. Maiers, et al., “Methods of fullerene extraction,” RF Patent No. 2272784, Byull. Izobret., No. 9 (2006), p. 37.

  42. 42

    V. S. Pavlovich and E. M. Shpilevskii, “Absorption and fluorescence spectra of C60 fullerene concentrated solutions in hexane and polystyrene at 77–300 K,” J. Appl. Spectrosc. 77, 335 (2010).

  43. 43

    S. Leach, M. Vervloet, A. Despres, et al., “Electronic spectra and transitions of the fullerene C60,” Chem. Phys. 160, 451 (1992).

  44. 44

    A. Cohen, J. Lundell, and R. B. Gerber, “First compounds with argon-carbon and argon-silicon chemical bonds,” J. Chem. Phys. 119, 6415 (2003).

  45. 45

    M. A. Liberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New Jersey, 2005).

  46. 46

    Laser Reference Book, Ed. by A. M. Prokhorov (Sov. Radio, Moscow, 1978), Vol. 1 [in Russian].

Download references

Author information

Correspondence to M. P. Danilaev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bogoslov, E.A., Danilaev, M.P., Drobyshev, S.V. et al. DETERMINATION OF THE STRUCTURE OF CARBON PARTICLES FORMED WHEN FORMING A POLYMER FILM IN A PLASMA CHEMICAL REACTOR. Nanotechnol Russia 14, 98–103 (2019) doi:10.1134/S1995078019020022

Download citation