Advertisement

Nanotechnologies in Russia

, Volume 13, Issue 7–8, pp 349–355 | Cite as

Preparation of a Functional Enzyme–Carbon Nanotube Complex by the Immobilization of Superoxide Dismutase on Single-Wall Carbon Nanotubes

  • D. K. Shishkova
  • Yu. I. Khodyrevskaya
  • A. G. Kutikhin
  • M. S. Rybakov
  • R. A. Mukhamadiyarov
  • S. D. Shandakov
Nanostructures, Including Nanotubes
  • 4 Downloads

Abstract

This paper describes a method for synthesizing single-wall carbon nanotubes (SWCNTs) and preparing a functional enzyme-carbon nanotube complex possessing antioxidant properties via the immobilization of superoxide dismutase on SWCNTs. spectrophotometry has shown that the inhibition of adrenochrome formation was accelerated by an increased added concentration of this enzyme-carbon nanotube complex. This indicates the successful immobilization of superoxide dismutase and functional activity of the superoxide dismutase (SOD)–SWCNT complex, which can be used in nanomedicine for delivering active SOD to tissues and cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Lin, J. Ren, and X. Qu, “Catalytically active nanomaterials: a promising candidate for artificial enzymes,” Acc. Chem. Res. 47, 1097–1105 (2014).CrossRefGoogle Scholar
  2. 2.
    R. A. Kotel’nikova, V. V. Grigor’ev, A. V. Smolina, I. I. Faingol’d, D. V. Mishchenko, G. I. Van’kin, V. L. Zamoiskii, D. A. Poletaeva, N. A. Markova, V. S. Romanova, A. I. Kotel’nikov, G. Aliev, and S. O. Bachurin, “Design of a hybrid nanostructure based on fullerene C60 and biologically active substance for modeling physiological properties of compounds,” Russ. Chem. Bull. 63, 2375–2382 (2014).CrossRefGoogle Scholar
  3. 3.
    R. Injac, M. Prijatelj, and B. Strukelj, “Fullerenol nanoparticles: toxicity and antioxidant activity,” Methods Mol. Biol. 1028, 75–100 (2013).CrossRefGoogle Scholar
  4. 4.
    L. G. Nilewski, W. K. Sikkema, T. A. Kent, and J. M. Tour, “Carbon nanoparticles and oxidative stress: could an injection stop brain damage in minutes?” Nanomedicine 10, 1677–1679 (2015).CrossRefGoogle Scholar
  5. 5.
    S. A. Ansari and Q. Husain, “Potential applications of enzymes immobilized on/in nanomaterials: a review,” Biotechnol. Adv. 30, 512–523 (2012).CrossRefGoogle Scholar
  6. 6.
    P. Asuri, S. S. Karajanagi, E. Sellitto, D-Y. Kim, R. S. Kane, and J. S. Dordick, “Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations,” Biotechnol. Bioeng. 95, 804–811 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Shah, K. Solanki, and M. N. Gupta, “Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes,” Chem. Central J. 1, 30 (2007).CrossRefGoogle Scholar
  8. 8.
    W. Putzbach and N. J. Ronkainen, “Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review,” Sensors 13, 4811–4840 (2013).CrossRefGoogle Scholar
  9. 9.
    Y. Song, K. Qu, C. Zhao, J. Ren, and X. Qu, “Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection,” Adv. Mater. 22, 2206–2210 (2010).CrossRefGoogle Scholar
  10. 10.
    M. L. Verma, C. J. Barrow, and M. Puri, “Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production,” Appl. Microbiol. Biotechnol. 97, 23–39 (2013).CrossRefGoogle Scholar
  11. 11.
    T. Madasamy, M. Pandiaraj, M. Balamurugan, S. Karnewar, A. R. Benjamin, K. A. Venkatesh, K. Vairamani, S. Kotamraju, and C. Karunakaran, “Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix,” Talanta 100, 168–174 (2012).CrossRefGoogle Scholar
  12. 12.
    A. B. Lumb, Nunn’s Applied Respiratory Physiology, 8th ed. (Elsevier, Amsterdam, 2017).Google Scholar
  13. 13.
    K. M. Holmström and T. Finkel, “Cellular mechanisms and physiological consequences of redox-dependent signaling,” Nat. Rev. Mol. Cell Biol. 15, 411–421 (2014).CrossRefGoogle Scholar
  14. 14.
    U. Förstermann, N. Xia, and H. Li, “Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis,” Circul. Res. 120, 713–735 (2017).CrossRefGoogle Scholar
  15. 15.
    E. Hood, E. Simone, P. Wattamwar, T. Dziubla, and V. Muzykantov, “Nanocarriers for vascular delivery of antioxidants,” Nanomedicine (London) 6, 1257–1272 (2011).CrossRefGoogle Scholar
  16. 16.
    B. S. Wong, S. L. Yoong, A. Jagusiak, T. Panczyk, H. K. Ho, W. H. Ang, and G. Pastorin, “Carbon nanotubes for delivery of small molecule drugs,” Adv. Drug Deliv. Rev. 65, 1964–2015 (2013).CrossRefGoogle Scholar
  17. 17.
    S. D. Shandakov, M. S. Rybakov, A. V. Kosobutsky, O. G. Sevostyanov, N. S. Zvidentsova, A. N. Gutov, M. V. Lomakin, and I. V. Anoshkin, “Controllable growth of single-walled carbon nanotubes by ethanolferrocene aerosol method,” Nanotechnol. Russ. 7, 370 (2012).CrossRefGoogle Scholar
  18. 18.
    S. D. Shandakov, A. V. Kosobutskii, O. G. Sevost’yanov, M. V. Lomakin, M. S. Rybakov, and D. M. Russakov, “Analysis of the efficiency of CVD synthesis of carbon nanotubes by the aerosol method based on ethanol,” Russ. Phys. J. 58, 1028–1031 (2015).CrossRefGoogle Scholar
  19. 19.
    T. V. Sirota, “Use of nitro blue tetrazolium in the reaction of adrenaline autooxidation for the determination of superoxide dismutase activity,” Biomed. Khim. 59, 399–410 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. K. Shishkova
    • 1
  • Yu. I. Khodyrevskaya
    • 1
  • A. G. Kutikhin
    • 1
  • M. S. Rybakov
    • 2
  • R. A. Mukhamadiyarov
    • 1
  • S. D. Shandakov
    • 2
  1. 1.Research Institute for Complex Issues of Cardiovascular DiseasesKemerovoRussia
  2. 2.Kemerovo State UniversityKemerovoRussia

Personalised recommendations