Advertisement

Nanotechnologies in Russia

, Volume 13, Issue 7–8, pp 406–413 | Cite as

Mathematical Modeling of Nanosensor Systems Based on Dynamic Light Scattering

  • A. D. LevinEmail author
  • I. S. Filimonov
  • M. K. Alenichev
  • T. A. Goidina
Devices and Products Based on Nanomaterials and Nanotechnologies
  • 3 Downloads

Abstract

A mathematical model describing optical nanosensors, the principle of action of which is based on an increase in the hydrodynamic diameters of functionalized nanoparticles (conjugates) under the influence of an analyte, is constructed. The formation of shells from analyte molecules around conjugates and the aggregation of conjugates to dimers at the expense of “bridges” represented by analyte molecules are considered. Antibodies capable of association with antibody footprints (epitopes) on analyte molecules are considered receptors, which are used for the functionalization of nanoparticles. The input parameters of the model are the sizes and concentrations of conjugates, kinetic constants of association and dissociation of receptors with epitopes, number of receptors per conjugate, and the concentration of the analyte. The model makes it possible to estimate the ranges of defined concentrations, as well as detect the limits during the development of nanosensors for specific analytes and optimizing parameters of these sensors, including the required incubation time for a mixture of conjugates with an analyte.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. H. Lai, S. Koo, S. H. Oh, E. A. Driskell, and J. D. Driskell, “Rapid screening of antibody -antigen binding using dynamic light scattering (DLS) and gold nanoparticles,” Anal. Methods, No. 17, 7249–7255 (2015).CrossRefGoogle Scholar
  2. 2.
    N. Seow, Y. N. Tan, and L.-Y. L. Yung, “Gold nanoparticles—dynamic light scattering tandem for rapid and quantative detection of the let-7 micro-RNA family,” Part. Part. Characteriz. 31, 1260–1268 (2014).CrossRefGoogle Scholar
  3. 3.
    N. Seow, Y. N. Tan, L.-Y. L. Yung, and X. Su, “DNA directed assambly of nanogold dimmers: a unique dynamic light scattering sensing probe for transcription factor detection,” Sci. Rep. 5, 18293 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Tang, J. Zhang, and D. Tang, “Magnetic bead-based dynamic light scattering aptasensor with rapid and feasible determination of disease-related boimarkers,” J. Bioprocess. Biotechnol. 6 (7), 1–4 (2016).CrossRefGoogle Scholar
  5. 5.
    C. Li, J. Ma, Q. Fan, Y. Taoa, and G. Li, “Dynamic light scattering (DLS)-based immunoassay for ultrasensitive detection of tumor marker protein,” Chem. Commun. 52, 7850–7853 (2016).CrossRefGoogle Scholar
  6. 6.
    T. Zheng, N. Pierre-Pierre, X. Yan, Q. Huo, A. Almodovar, F. Valerio, I. Rivera-Ramirez, E. Griffith, D. D. Decker, S. Chen, and N. Zhu, “A gold nanoparticles—enabled blood test for early stage cancer detection and risk assessment,” ACS Appl. Mater. Interfaces, No. 7, 6819–6827 (2015).CrossRefGoogle Scholar
  7. 7.
    N. Mustafaoglua, T. Kiziltepea, and B. Bilgicer, “Sitespecific conjugation of antibody on gold nanoparticles surface for one-step diagnostics of prostate-specific antigen with dynamic light scattering,” Nanoscale 9, 8684–8694 (2017).CrossRefGoogle Scholar
  8. 8.
    Q. Huo, S. A. Litherland, S. Sullivan, H. Hallquist, D. A. Decker, and I. Rivera-Ramirez, “Developing of nanoparticle test for prostate cancer scoring,” J. Transl. Med. 10, 2–8 (2012).CrossRefGoogle Scholar
  9. 9.
    J. D. Driskell, C. A. Jones, S. M. Tompkins, and R. A. Tripp, “One-step assay for detecting the influenza virus using dynamic light scattering and gold nanoparticles,” Analyst 136, 3083–3090 (2011).CrossRefGoogle Scholar
  10. 10.
    T. Zheng, Z. C. Finn, C. Parrett, K. Dhume, J. H. Hwang, D. Sidhom, T. Strutt, Y. Y. L. Sip, K. McKinstry, and Q. Huo, “A rapid blood test to determine of acute viral infection,” ACS Infection Decease 3, 866–873 (2017).CrossRefGoogle Scholar
  11. 11.
    X. Huang, Z. Xu, Y. Mao, Y. Ji, H. Xu, Y. Xiong, and Y. Li, “Gold nanoparticle-based dynamic light scattering immunoassay for ultrasensitive detection of listeria monocytogenes in lettuces,” Biosens. Bioelectron. 66, 184–190 (2015).CrossRefGoogle Scholar
  12. 12.
    D. Gao, Z. Sheng, and H. Han, “An ultrasensitive method for the detection of gene fragment from transgenics using label-free gold nanoparticle probe and dynamic light scattering,” Anal. Chim. Acta 696, 1–5 (2011).CrossRefGoogle Scholar
  13. 13.
    D. V. Sotnikov, A. V. Zherdev, and B. B. Dzantiev, “Mathematical modeling of bioanalytical systems,” Usp. Biol. Khim. 57, 385–438 (2017).Google Scholar
  14. 14.
    I. A. Nikiforov, Adsorption Methods in Ecology, The School-Book (Saratov, 8) [in Russian].Google Scholar
  15. 15.
    B. Saha, T. H. Evers, and M. W. J. Prins, “How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing,” Anal. Chem. 86, 8158–8166 (2014).CrossRefGoogle Scholar
  16. 16.
    V. M. Nekrasov, A. A. Polshchitsin, M. A. Yurkin, G. E. Yakovleva, V. P. Maltsev, and A. V. Chernyshev, “Brownian aggregation rate of colloid particles with several active sites,” J. Chem. Phys. 141, 064309 (2014).CrossRefGoogle Scholar
  17. 17.
    E. D. Shchukin, A. V. Perlov, and E. A. Amelina, Colloid Chemistry, 5th ed. (Vysshaya Shkola, Moscow, 2007) [in Russian].Google Scholar
  18. 18.
    H. Holthoff, S. U. Egelhaaf, M. Borkovec, P. Schurtenberger, and H. Sticher, “Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering,” Langmuir 12, 5541–5549 (1996).CrossRefGoogle Scholar
  19. 19.
    D2DxTM—A Single-Step Immunoassay Technology from Nano Discovery. http://www.nanodiscoveryinc. com/place-order.html.Google Scholar
  20. 20.
    Medix MAB Antibodies Product. www.medixbiochemica. com/wp-content/uploads/2017/07/Anti-LH-5302-SP-1-Product-Specification-v1.pdf.Google Scholar
  21. 21.
    X. Liu, Qiu Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130, 2780–2782 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. D. Levin
    • 1
    Email author
  • I. S. Filimonov
    • 1
  • M. K. Alenichev
    • 1
  • T. A. Goidina
    • 1
    • 2
  1. 1.All-Russian Research Institute for Optical and Physical MeasurementsMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations