Advertisement

Nanotechnologies in Russia

, Volume 13, Issue 7–8, pp 400–405 | Cite as

Effect of Keggin Heteropoly Acids on Human Embryo Fibroblast Cells

  • S. A. KovalevskiiEmail author
  • O. A. Lopatina
  • F. I. Dalidchik
  • O. V. Baklanova
  • I. A. Suetina
  • L. I. Russu
  • E. A. Gushchina
  • E. I. Isaeva
  • M. V. Mezentseva
Nanobiology
  • 3 Downloads

Abstract

The strong dependence of cytotoxicity of Keggin heteropoly acids [XM12O40]n, X = Si or P, M = Mo and W, n = 3 or 4 on chemical composition is demonstrated using the example of human embryo fibroblast cells based on the results of diagnostics using impedance monitoring, scanning electron microscopy, and measurements of visible cell sizes. The explanation of this dependence based on the role of hydrolytic stability of multiply charged anions in the development of cytotoxicity of these compounds is suggested. The results make it possible to suggest a new mechanism for the development of selectivity of polyoxometalate cytotoxicity relative to the studied cells. The differentiated cytotoxic activity of polyoxometalates relative to oncogenic cells is predicted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Pop, Heteropoly-and Isopolyoxometallates (Nauka, Novosibirsk, 1990) [in Russian].Google Scholar
  2. 2.
    D.-L. Long, E. Burkholder, and L. Cronin, “Polyoxometalate clusters, nanostructures, and materials: from self assembly to designer materials and devices,” Chem. Soc. Rev. 36, 105–121 (2007).CrossRefGoogle Scholar
  3. 3.
    G. I. T. Cooper, P. I. Kitson, R. Winter, M. Zagnoni, D.-L. Long, and L. Cronin, “Modular redox-active inorganic chemical cells: ICHELLs,” Angew. Chem., Int. Ed. 50, 10373–10376 (2011).CrossRefGoogle Scholar
  4. 4.
    D. Karimian, B. Yadollahi, and V. Mirkhani, “Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery,” Microporous Mesoporous Mater. 247, 23–30 (2017).CrossRefGoogle Scholar
  5. 5.
    W. Lu, Zh. Baibin, and L. Jiaren, “Anticancer polyoxometalates,” Prog. Chem. 25, 1131–1141 (2013).Google Scholar
  6. 6.
    J. T. Rhule, C. L. Hill, D. A. Judd, and R. F. Schinazi, “Polyoxometalates in medicine,” Chem. Rev. 98, 327–358 (1998).CrossRefGoogle Scholar
  7. 7.
    S. Shigeta, S. Mori, T. Yamase, N. Yamamoto, and N. Yamamoto, “Anti-RNA virus. Activity of polyoxometalates,” Biomed. Pharmacother. 60, 211–219 (2006).CrossRefGoogle Scholar
  8. 8.
    H. Yanagie, A. Ogata, S. Mitsui, T. Hisa, T. Yamase, and M. Eriguchi, “Anticancer activity of polyoxomolybdate,” Biomed. Pharmacother. 60, 349–352 (2006).CrossRefGoogle Scholar
  9. 9.
    L. Wang, K. Yu, B.-B. Zhou, Z.-H. Su, S. Gao, L.-L. Chu, and J.-R. Liu, “The inhibitory effects of a new cobalt-based polyoxometalate on the growth of human cancer cells,” Dalton Trans. 43, 6070–6078 (2014).CrossRefGoogle Scholar
  10. 10.
    L. Fu, H. Gao, M. Yan, S. Li, X. Li, Z. Dai, and S. Liu, “Polyoxometalate-based organic-inorganic hybrids as antitumor drugs,” Small 11, 2938–2945 (2015).CrossRefGoogle Scholar
  11. 11.
    I. A. Suetina, M. V. Mezentseva, E. A. Gushchina, F. A. Lisitsin, L. I. Russu, O. A. Lopatina, E. L. Firsova, S. A. Kovalevskii, B. A. Budanov, F. I. Dalidchik, A. S. Seleznev, R. A. Morozov, and E. A. Gushchina, “Study of growth activity and viability of cultured human embryo fibroblasts under the influence of polyoxametalates,” Inform. Byull. Kletochn. Kul’tury, No. 31, 67–78 (2015).Google Scholar
  12. 12.
    O. A. Lopatina, O. V. Baklanova, I. A. Suetina, E. I. Isaeva, E. A. Gushchina, L. V. Russu, F. A. Lisitsin, S. A. Kovalevskii, B. A. Budanov, F. I. Dalichik, and M. V. Mezentseva, “Cytotoxic and antiviral effect of polyoxometalates in vitro experiments,” in Proceedings of the 22nd Russian National Congress on Human and Medicine, Moscow, 2015, p. 230.Google Scholar
  13. 13.
    O. A. Lopatina, O. V. Baklanova, I. A. Suetina, E. I. Isaeva, E. A. Gushchina, L. V. Russu, F. A. Lisitsin, S. A. Kovalevskii, B. A. Budanov, F. I. Dalichik, and M. V. Mezentseva, “Toxic effect of polyoxometalates (POMs) with Keggin’s structure on normal and tumor cells culture,” Biol. Radioelektron., No. 3, 42–49 (2015).Google Scholar
  14. 14.
    Q. Liu, C. Wu, H. Cai, N. Hu, J. Zhou, and P. Wang, “Cell-based biosensors and their application in biomedicine,” Chem. Rev. 114, 6423–6461 (2014).CrossRefGoogle Scholar
  15. 15.
    F. Asphahani, M. Thein, K. Wang, D. Wood, S.-S. Wong, J. Xu, and M. Zhang, “Real-time characterization of cytotoxicity using single-cell impedance monitoring,” Analyst 137, 3011–3019 (2012).CrossRefGoogle Scholar
  16. 16.
    J. Z. Xing, L. Zhu, J. A. Jackson, S. Gabos, X. J. Sun, X. B. Wang, and X. Xu, “Dynamic monitoring of cytotoxicity on microelectronic sensors,” Chem. Res. Toxicol. 18, 154–161 (2005).CrossRefGoogle Scholar
  17. 17.
    R. A. Cardone, V. Casavola, and S. J. Reshkin, “The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis,” Nat. Rev. Cancer 5, 786–795 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Anderson, A. Moshnikova, D. M. Engelman, Y. Reshetnyak, and O. Andreev, “Probe for the measurement of cell surface pH in vivo and ex vivo,” Proc. Natl. Acad. Sci. U.S.A. 113, 8177–8181 (2016).CrossRefGoogle Scholar
  19. 19.
    X. Lopez, J. A. Fernández, and J. M. Poblet, “Redox properties of polyoxometalates: new insights on the anion charge effect,” Dalton Trans., No. 9, 1162–1167 (2006).CrossRefGoogle Scholar
  20. 20.
    M. H. Ross, L. J. Romrell, and G. I. Kaye, Histology—A Text and Atlas, 3rd ed. (Williams and Wilkins, Baltimore, 1995).Google Scholar
  21. 21.
    I. Holclajtner-Antunovi, V. Kunti, Z. Jurani, I. Filipovi, U. Mio, and T. Stanojkovi, “Study of some polyoxometalates of Keggin’s type as potential antitumor agents,” Jugoslav Med. Biohem. 23, 25–30 (2004).CrossRefGoogle Scholar
  22. 22.
    Y. Liu, S. Tian, S. Liu, and E. Wang, “In vitro inhibitory effect of polyoxometalates on human tumor cells,” Transit. Met. Chem. 30, 113–117 (2005).CrossRefGoogle Scholar
  23. 23.
    S. Dianat, S. Tangestaninejad, B. Yadollahi, A. K. Bordbar, M. Moghadam, V. Mirkhani, and I. Mohammadpoor-Baltork, “Stability investigation of some heteropolyoxotungstate and heteropolyoxomolybdate salts in buffer solutions,” J. Mol. Liq. 174, 76–79 (2012).CrossRefGoogle Scholar
  24. 24.
    D. Bajuk-Bogdanovic, I. Holclajtner-Antunovic, M. Todorovic, U. Mio, and J. Zakrzewska, “A study of 12-tungstosilicic and 12-molybdophosphoric acids in solution,” J. Serb. Chem. Soc. 73, 197–209 (2008).CrossRefGoogle Scholar
  25. 25.
    S. Harguindey, D. Stanciu, J. Devesab, K. Alfarouk, R. Cardone, J. Polo, P. Devesa, C. Rauch, G. Orive, E. Anitua, S. Roger, and S. Reshkin, “Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases,” Seminars Cancer Biol. 43, 157–179 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Kovalevskii
    • 1
    Email author
  • O. A. Lopatina
    • 2
  • F. I. Dalidchik
    • 1
  • O. V. Baklanova
    • 2
  • I. A. Suetina
    • 2
  • L. I. Russu
    • 2
  • E. A. Gushchina
    • 2
  • E. I. Isaeva
    • 2
  • M. V. Mezentseva
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Gamaleya National Research Center of Epidemiology and MicrobiologyMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations