Nanotechnologies in Russia

, Volume 13, Issue 7–8, pp 356–364 | Cite as

Structural Parameters of Ordered Nanocomposites Based on Opal Matrices in Accordance with the Data of Small Angle X-Ray and Neutron Scattering: Opal Matrix. Part I

  • S. N. IvichevaEmail author
  • S. V. Amarantov
  • Yu. F. Kargin
  • V. V. Volkov
Functional Nanomaterials


The structure of nanocomposites based on opal matrices with different types of filling of structural voids is investigated. It is shown that the order in which tetrahedral and octahedral voids in the opal matrix are filled with various substances affects the X-ray diffraction pattern in the small angle region. On the basis of neutron diffraction, small angle X-ray scattering, and transmission electron microscopy data, models are proposed for filling the voids. The structural parameters of ordered nanocomposites based on opal matrices of different compositions are determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. I. Svergun and L. A. Feigin, X-Ray and Neutron Small-Angle Scattering (Nauka, Moscow, 1986) [in Russian].Google Scholar
  2. 2.
    A. A. Eliseev, D. F. Gorozhankin, K. S. Napol’skii, A. V. Petukhov, N. A. Sapoletova, A. V. Vasilieva, N. A. Grigoryeva, A. A. Mistonov, D. V. Byelov, V. G. Bouwman, K. O. Kvashnina, D. Yu. Chernyshov, A. A. Bosak, and S. V. Grigoriev, “Determination of the real structure of artificial and natural opals on the basisof three-dimensional reconstructions of reciprocal space,” JETP Lett. 90, 272 (2009).CrossRefGoogle Scholar
  3. 3.
    V. M. Masalov, E. A. Kudrenko, N. A. Grigoryeva, K. V. Voronina, V. V. Roddatis, N. S. Sukhinina, M. V. Arefyev, A. A. Mistonov, S. V. Grigoriev, and G. A. Emelchenko, “Direct observation of the shelllike structure of SiO2 particles synthesized by the multistage stober method,” NANO: Brief Rep. Rev. 8, 1350036 (2013).CrossRefGoogle Scholar
  4. 4.
    F. Marlow, M. Muldarisnur, P. Sharifi, and H. Zabel, “Interpretation of small-angle diffraction experiments on opal-like photonic crystals,” Phys. Rev. B 84, 073401 (2011).CrossRefGoogle Scholar
  5. 5.
    P. Sharifi, “Structural characterization of opal-based photonic crystals,” PhD Dissertation (2013).Google Scholar
  6. 6.
    S. N. Ivicheva, S. V. Kutsev, Yu. F. Kargin, and N. A. Alad’ev, “Colloidal and transparent opal-matrix nanocomposites filled with europium-doped silica sols,” Inorg. Mater. 50, 253 (2014).CrossRefGoogle Scholar
  7. 7.
    S. N. Ivicheva, Yu. F. Kargin, N. A. Aladiev, S. V. Kutsev, and V. S. Gorelik, “Nanocomposites based on opal matrices and silica sols doped with rare earth compounds,” J. Sol-Gel Sci. Technol. 68, 429–437 (2013).CrossRefGoogle Scholar
  8. 8.
    S. N. Ivicheva, Yu. F. Kargin, and S. G. Sakharov, “Manufacture of opal-matrix functional nanocomposites by catalytic dehydrogenation of isopropanol under supercritical conditions,” Russ. J. Inorg. Chem. 59, 1077 (2014).CrossRefGoogle Scholar
  9. 9.
    S. N. Ivicheva, Yu. F. Kargin, S. V. Kutsev, and A. A. Ashmarin, “Synthesis of different bismuth titanates and ordered Bi–Ti–O nanocomposites based on opal matrices,” Russ. J. Inorg. Chem. 60, 1317 (2015).CrossRefGoogle Scholar
  10. 10.
    O. Glatter and O. Kratky, Small Angle X-Ray Scattering (Academic, London, 1982).Google Scholar
  11. 11.
    T. C. Huang, H. Toraya, T. N. Blanton, and Y. Wu, “X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard,” J. Appl. Crystallogr. 26, 180–184 (1993).CrossRefGoogle Scholar
  12. 12.
    R. Mayoral, J. Requena, C. Lypez, S. J. Moya, H. Mhguez, L. Vozquez, F. Meseguer, M. Holgado, A. Cintas, and A. Blanco, “3D long range ordering of submicrometric SiO2 sintered superstructures,” Adv. Mater. 9, 257–260 (1997).CrossRefGoogle Scholar
  13. 13.
    N. V. Belov, Structure of Ionic Crystals and Metal Phases (Akad. Nauk SSSR, Moscow, 1947) [in Russian].Google Scholar
  14. 14.
    O. A. Kavtreva, A. V. Ankudinov, A. G. Bazhenova, Yu. A. Kumzerov, M. F. Limonov, K. B. Samusev, and A. V. Sel’kin, “Optical characterization of natural and synthetic opals by Bragg reflection spectroscopy,” Phys. Solid State 49, 708 (2007).CrossRefGoogle Scholar
  15. 15.
    A. K. Boldyrev, Crystallography, 3rd ed. (GorGeoNefteIzdat, Groznyi, Novosibirsk, Moscow, Leningrad, 1934) [in Russian].Google Scholar
  16. 16.
    W. Hume-Rothery, Elements of Structural Metallurgy (Inst. Metals, London, 1961).Google Scholar
  17. 17.
    G. B. Bokii, Introduction to Crystal Chemistry (Mosk. Gos. Univ., Moscow, 1954) [in Russian].Google Scholar
  18. 18.
    A. G. Khachaturyan, Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].Google Scholar
  19. 19.
    A. S. Poplavnoi, “Symmetry of crystals composed of two bravais sublattices in 6D crystal spaces,” Crystallogr. Rep. 55, 169 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. N. Ivicheva
    • 1
    Email author
  • S. V. Amarantov
    • 2
  • Yu. F. Kargin
    • 1
  • V. V. Volkov
    • 2
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  2. 2.Shubnikov Institute of CrystallographyFederal Research Center Crystallography and PhotonicsMoscowRussia

Personalised recommendations