Nanotechnologies in Russia

, Volume 13, Issue 7–8, pp 384–392 | Cite as

Immunogenicity of Conjugates of Protective Antigen Complexes of Tularemia Microbe with Gold Nanoparticles

  • L. A. DykmanEmail author
  • O. A. Volokh
  • E. M. Kuznetsova
  • A. K. Nikiforov


Conjugates of gold nanoparticles with two isolated tularemia microbe antigens, a protective antigen complex and a glycosylated protein complex, are used to obtain anti-tularemia sera and to vaccinate animals. A conjugate of gold nanoparticles with the glycosylated protein complex during the subcutaneous immunization of mice is more effective than the unconjugated antigen, which is evident from the increase in protectiveness and antibody titers. The use of conjugates of both antigens with gold nanoparticles during the immunization of rabbits makes it possible to obtain sera with a high titer of specific antibodies (1/64–1/128 titer in the diffusion precipitation reaction and 1/5120–1/10240 in the reaction of indirect hemagglutination) during a relatively short period of time and with minimal antigen consumption (1.8–10 mg). The use of immunoglobulins extracted from sera during the enzyme-linked immunosorbent assay makes it possible to detect Francisella tularensis cells of different subspecies in the amount of (5.2 ± 0.5) × 105 MC/mL with 100% specificity for heterologous strains at a concentration of 108 MC/mL, which enables their subsequent application in the production of preparations for the diagnostics of tularemia.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Maurin and M. Gyuranecz, “Tularaemia: clinical aspects in europe,” Lancet Infect. Dis. 16, 113–124 (2016).CrossRefGoogle Scholar
  2. 2.
    T. Y. Kudryavtseva, D. V. Trankvilevsky, A. N. Mokrievich, V. P. Popov, N. S. Morozova, M. V. Zarochentsev, A. V. Mazepa, L. P. Okunev, A. V. Kholin, S. A. Kosilko, Y. M. Fedorov, M. V. Khramov, and I. A. Dyatlov, “Epizootic and epidemic situation on tularemia in the russian federation in 2015 and prognosis for 2016,” Probl. Osobo Opasn. Infekts., No. 1, 28–32 (2016).CrossRefGoogle Scholar
  3. 3.
    D. Putzova, I. Senitkova, and J. Stulik, “Tularemia vaccines,” Folia Microbiol. 61, 495–504 (2016).CrossRefGoogle Scholar
  4. 4.
    R. Sunagar, S. Kumar, B. J. Franz, and E. J. Gosselin, “Tularemia vaccine development: paralysis or progress?,” Vaccine (Auckl.) 2016 (6), 9–23 (2016).Google Scholar
  5. 5.
    M. J. Hepburn and A. J. Simpson, “Tularemia: current diagnosis and treatment options,” Expert Rev. Anti Infect. Ther. 6, 231–240 (2008).CrossRefGoogle Scholar
  6. 6.
    G. G. Onishchenko and V. V. Kutyrev, Laboratory Diagnosis of Dangerous Infectious Diseases: A Practical Guide (Shiko, Moscow, 2013) [in Russian].Google Scholar
  7. 7.
    E. M. Kuznetsova, O. A. Volokh, E. A. Smol’kova, T. N. Shchukovskaya, I. A. Shepelev, N. G. Avdeeva, A. L. Kravtsov, and A. K. Nikiforov, “Immunobiological properties of francisella tularensis antigen complexes,” Probl. Osobo Opasn. Infekts., No. 3, 46–49 (2011).CrossRefGoogle Scholar
  8. 8.
    H. M. Rowe and J. F. Huntley, “The francisella tularensis envelope and virulence,” Front. Cell. Infect. Microbiol. 5, 94 (2015).CrossRefGoogle Scholar
  9. 9.
    M. Zaman, M. F. Good, and I. Toth, “Nanovaccines and their mode of action,” Methods 60, 226–231 (2013).CrossRefGoogle Scholar
  10. 10.
    C. K. Prashant, M. Kumar, and A. K. Dinda, “Nanoparticle based tailoring of adjuvant function: the role in vaccine development,” J. Biomed. Nanotechnol. 10, 2317–2331 (2014).CrossRefGoogle Scholar
  11. 11.
    A. N. Ilinskaya and M. A. Dobrovolskaia, “Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future,” Toxicol. Appl. Pharmacol. 299, 70–77 (2016).CrossRefGoogle Scholar
  12. 12.
    L. M. Marques Neto, A. Kipnis, and A. P. Junqueira-Kipnis, “Role of metallic nanoparticles in vaccinology: implications for infectious disease vaccine development,” Front. Immunol. 8, 239 (2017).CrossRefGoogle Scholar
  13. 13.
    L. A. Dykman, M. V. Sumaroka, S. A. Staroverov, I. S. Zaitseva, and V. A. Bogatyrev, “Immunogenic properties of colloidal gold,” Biol. Bull. Russ. Acad. Sci. 31, 75–79 (2004).CrossRefGoogle Scholar
  14. 14.
    J. A. Salazar-González, O. González-Ortega, and S. Rosales-Mendoza, “Gold nanoparticles and vaccine development,” Expert Rev. Vaccines 14, 1197–1211 (2015).CrossRefGoogle Scholar
  15. 15.
    L. A. Dykman, S. A. Staroverov, V. A. Bogatyrev, and S. Y. Shchyogolev, “Adjuvant properties of gold nanoparticles,” Nanotechnol. Russ. 5, 748–761 (2010).CrossRefGoogle Scholar
  16. 16.
    L. A. Dykman and N. G. Khlebtsov, “Immunological properties of gold nanoparticles,” Chem. Sci. 8, 1719–1735 (2017).CrossRefGoogle Scholar
  17. 17.
    E. M. Kuznetsova, O. A. Volokh, I. A. Shepelev, and A. K. Nikiforov, “The components of francisella tularensis protective antigene complex,” Mol. Genet., Mikrobiol. Virusol., No. 3, 22–25 (2012).Google Scholar
  18. 18.
    E. M. Kuznetsova, O. A. Volokh, I. A. Shepelev, and N. G. Avdeeva, “Glycosylated protein complex francisella tularensis,” in Innovative Technologies in Anti-Epidemic Protection of the Population, Ed. by E. I. Efimov (Areal, Nizh. Novgorod, 2011), pp. 93–95 [in Russian].Google Scholar
  19. 19.
    G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci. 241 (105), 20–22 (1973).CrossRefGoogle Scholar
  20. 20.
    W. Geoghegan and G. Ackerman, “Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection od concanavalin a, wheat germ agglutinin and goat antihuman immunoglobuli G on cell surfaces at the electron microscopic level: a new method, theory and application,” J. Histochem. Cytochem. 25, 1187–1200 (1977).CrossRefGoogle Scholar
  21. 21.
    A. I. Karpishchenko, Medical Laboratory Technologies: A Guide to Clinical Laboratory Diagnostics (GOETARMedia, Moscow, 2012) [in Russian].Google Scholar
  22. 22.
    S. Glants, Biomedical Statistics (Praktika, Moscow, 1998) [in Russian].Google Scholar
  23. 23.
    V. S. Khlebnikov, I. R. Golovlev, D. P. Kulevatskii, S. F. Averin, S. Yu. Pshirkov, N. V. Tokhtamysheva, V. E. Zhemchugov, L. A. Safonova, V. N. Gerasimov, A. M. Chugunov, S. S. Vetchinin, V. G. Galaktionov, and S. S. Afanas’ev, “Biochemical, antigenic and protective properties of the outer membrane of tularemia pathogens,” Mol. Genet., Mikrobiol. Virusol., No. 7, 15–20 (1991).Google Scholar
  24. 24.
    L. A. Dykman, S. A. Staroverov, A. S. Fomin, V. A. Khanadeev, B. N. Khlebtsov, and V. A. Bogatyrev, “Gold nanoparticles as an adjuvant: influence of size, shape, and technique of combination with CpG on antibody production,” Int. Immunopharmacol. 54, 163–168 (2018).CrossRefGoogle Scholar
  25. 25.
    A. N. Somov, T. B. Kravchenko, V. M. Pavlov, G. M. Vakhrameeva, T. I. Kombarova, R. I. Mironova, V. V. Firstova, O. V. Kalmantaeva, S. S. Vetchinin, and A. N. Mokrievich, “Antigenic and immunogenic characteristics of dissolved, adsorbed and microencapsulated formulations of acid-insoluble complex from Francisella tularensis 15 NIIG strain,” Biotekhnologiya 33 (5), 23–34 (2017).CrossRefGoogle Scholar
  26. 26.
    S. Chattopadhyay, J.-Y. Chen, H.-W. Chen, and C.-M. J. Hu, “Nanoparticle vaccines adopting viruslike features for enhanced immune potentiation,” Nanotheranostics 1, 244–260 (2017).CrossRefGoogle Scholar
  27. 27.
    S. A. C. Carabineiro, “Applications of gold nanoparticles in nanomedicine: recent advances in vaccines,” Molecules 22, 857 (2017).CrossRefGoogle Scholar
  28. 28.
    Y. Shen, T. Hao, S. Ou, C. Hu, and L. Chen, “Applications and perspectives of nanomaterials in novel vaccine development,” Med. Chem. Commun. 9, 226–238 (2018).CrossRefGoogle Scholar
  29. 29.
    L. C.-W. Lin, S. Chattopadhyay, J. C. Lin, C. M. J. Hu, “Advances and opportunities in nanoparticle-and nanomaterials-based vaccines against bacterial infections,” Adv. Healthcare Mater. 7, e1701395 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. A. Dykman
    • 1
    Email author
  • O. A. Volokh
    • 2
  • E. M. Kuznetsova
    • 2
  • A. K. Nikiforov
    • 2
    • 3
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  2. 2.Microbe Russian Antiplaque Scientific Research InstituteRussian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)SaratovRussia
  3. 3.Vavilov Saratov State Agrarian UniversitySaratovRussia

Personalised recommendations