Advertisement

Nanotechnologies in Russia

, Volume 13, Issue 7–8, pp 430–438 | Cite as

Complexes of Gold Nanoparticles with Antibodies in Immunochromatography: Comparison of Direct and Indirect Immobilization of Antibodies for the Detection of Antibiotics

  • A. N. Berlina
  • A. V. Bartosh
  • D. V. Sotnikov
  • A. V. Zherdev
  • C. Xu
  • B. B. DzantievEmail author
Materials of the Conference “Nanomaterials and Living Systems” (NLS-2018), Kazan, 2018
  • 5 Downloads

Abstract

Complexes of spherical gold nanoparticles with antibodies, obtained by direct adsorption and indirect (nanoparticle–anti-species antibody–specific antibody) interaction, were studied. The binding processes for nanoparticle-labeled antibodies in immunochromatographic analysis (ICA) and competitive detection of low molecular weight analytes are considered. Based on the developed mathematical model, the advantages of indirect labeling of antibodies are shown; the parameters determining the gain in the detection limit between two kinds of systems are characterized. The obtained complexes of gold nanoparticles with antibodies were used for the development of ICA for antibiotics. The reached detection limit of ampicillin ICA is 100 ng/mL for direct labeling and 16 ng/mL for indirect; in the case of tetracycline, these values are equal to 4.2 and 1.3 ng/mL, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. B. Dzantiev, N. A. Byzova, A. E. Urusov, and A. V. Zherdev, “Immunochromatographic methods in food analysis,” Trends Anal. Chem. 55, 81–93 (2014).CrossRefGoogle Scholar
  2. 2.
    I. Y. Goryacheva, P. Lenain, and S. de Saeger, “Nanosized labels for rapid immunotests,” Trends Anal. Chem. 46, 30–43 (2013).CrossRefGoogle Scholar
  3. 3.
    Z. Farka, T. Jurik, D. Kovar, L. Trnkova, and P. Skladal, “Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges,” Chem. Rev. 117, 9973–10042 (2017).CrossRefGoogle Scholar
  4. 4.
    A. van Amerongen, J. Veen, H. A. Arends, and M. Koets, “Lateral flow immunoassays,” in Handbook of Immunoassay Technologies: Approaches, Performances, and Applications, Ed. by S. K. Vashist and J. H. T. Luong (Elsevier, UK, 2018), Chap. 7, pp. 157–182.CrossRefGoogle Scholar
  5. 5.
    W. C. Mak, V. Beni, and A. P. F. Turner, “Lateral-flow technology: from visual to instrumental,” Trends Anal. Chem. 79, 297–305 (2013).CrossRefGoogle Scholar
  6. 6.
    J. Li and J. Macdonald, “Multiplexed lateral flow biosensors: technological advances for radically improving point-of-care diagnoses,” Biosens. Bioelectron. 83, 177–192 (2016).CrossRefGoogle Scholar
  7. 7.
    C. Deroe, P. J. Courtoy, and P. Baudhuin, “Model of protein-colloidal gold interactions,” J. Histochem. Cytochem. 35, 1191–1198 (1987).CrossRefGoogle Scholar
  8. 8.
    N. G. Khlebtsov, V. A. Bogatyrev, B. N. Khlebtsov, L. A. Dykman, and P. Englebienne, “A multilayer model for gold nanoparticle bioconjugates: application to study of gelatin and human IgG adsorption using extinction and light scattering spectra and the dynamic light scattering method,” Colloid J. 65, 622–635 (2003).CrossRefGoogle Scholar
  9. 9.
    S. H. D. P. Lacerda, J. J. Park, C. Meuse, D. Pristinski, M. Becker, A. Karim, and J. F. Douglas, “Interaction of gold nanoparticles with common human blood proteins,” ACS Nano 4, 365–379 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Wang, K. Vangala, T. Vo, D. Zhang, and N. C. Fitzkee, “A three-step model for protein-gold nanoparticle adsorption,” J. Phys. Chem. C 118, 8134–8142 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Zhang, Y. Moustafa, and Q. Huo, “Different interaction modes of biomolecules with citrate-capped gold nanoparticles,” ACS Appl. Mater. Interfaces 6, 21184–21192 (2014).CrossRefGoogle Scholar
  12. 12.
    M. J. Pollitt, G. Buckton, R. Piper, and S. Brocchini, “Measuring antibody coatings on gold nanoparticles by optical spectroscopy,” RSC Adv. 5, 24521–24527 (2015).CrossRefGoogle Scholar
  13. 13.
    D. V. Sotnikov, A. V. Zherdev, and B. B. Dzantiev, “Development and application of a label-free fluorescence method for determining the composition of gold nanoparticle-protein conjugates,” Int. J. Mol. Sci. 16, 907–923 (2015).CrossRefGoogle Scholar
  14. 14.
    S. L. Filbrun and J. D. Driskell, “A fluorescence-based method to directly quantify antibodies immobilized on gold nanoparticles,” Analyst 141, 3851–3857 (2016).CrossRefGoogle Scholar
  15. 15.
    K. E. Woods, Y. R. Perera, M. B. Davidson, C. A. Wilks, D. K. Yadav, and N. C. Fitzkee, “Understanding protein structure deformation on the surface of gold nanoparticles of varying size,” J. Phys. Chem. C 120, 27944–27953 (2016).CrossRefGoogle Scholar
  16. 16.
    M. Ahumada, E. Lissi, A. M. Montagut, F. Valenzuela-Henriquez, N. L. Pacioni, and E. I. Alarcon, “Association models for binding of molecules to nanostructures,” Analyst 142, 2067–2089 (2017).CrossRefGoogle Scholar
  17. 17.
    S. Thobhani, S. Attree, R. Boyd, N. Kumarswami, J. Noble, M. Szymanski, and R. A. Porter, “Bioconjugation and characterisation of gold colloid-labelled proteins,” J. Immunol. Methods 356, 60–69 (2010).CrossRefGoogle Scholar
  18. 18.
    I. Safenkova, A. Zherdev, and B. Dzantiev, “Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X,” Anal. Bioanal. Chem 403, 1595–1605 (2012).CrossRefGoogle Scholar
  19. 19.
    L. Anfossi, C. Baggiani, C. Giovannoli, F. Biagioli, G. D’Arco, and G. Giraudi, “Optimization of a lateral flow immunoassay for the ultrasensitive detection of aflatoxin M1 in milk,” Anal. Chim. Acta 772, 75–80 (2013).CrossRefGoogle Scholar
  20. 20.
    B. Saha, T. H. Evers, and M. W. J. Prins, “How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing,” Anal. Chem. 86, 8158–8166 (2014).CrossRefGoogle Scholar
  21. 21.
    E. A. Zvereva, N. A. Byzova, P. G. Sveshnikov, A. V. Zherdev, and B. B. Dzantiev, “Cut-off on demand: adjustment of the threshold level of an immunochromatographic assay for chloramphenicol,” Anal. Methods 7, 6378–6384 (2015).CrossRefGoogle Scholar
  22. 22.
    N. A. Byzova, I. V. Safenkova, E. S. Slutskaya, A. V. Zherdev, and B. B. Dzantiev, “Less is more: a comparison of antibody-gold nanoparticle conjugates of different ratios,” Bioconjugate Chem. 28, 2737–2746 (2017).CrossRefGoogle Scholar
  23. 23.
    A. E. Urusov, A. V. Zherdev, and B. B. Dzantiev, “Use of gold nanoparticle-labeled secondary antibodies to improve the sensitivity of an immunochromatographic assay for aflatoxin B1,” Microchim. Acta 181, 1939–1946 (2014).CrossRefGoogle Scholar
  24. 24.
    A. E. Urusov, A. V. Petrakova, A. V. Zherdev, and B. B. Dzantiev, “"Multistage in one touch” design with a universal labelling conjugate for high-sensitive lateral flow immunoassays,” Biosens. Bioelectron. 86, 575–579 (2016).CrossRefGoogle Scholar
  25. 25.
    A. V. Petrakova, A. E. Urusov, M. K. Gubaydullina, A. V. Bartosh, A. V. Zherdev, and B. B. Dzantiev, “'External’ antibodies as the simplest tool for sensitive immunochromatographic tests,” Talanta 175, 77–81 (2017).CrossRefGoogle Scholar
  26. 26.
    A. E. Urusov, A. V. Petrakova, A. V. Bartosh, M. K. Gubaidullina, A. V. Zherdev, and B. B. Dzantiev, “Immunochromatographic assay of T-2 toxin using labeled anti-species antibodies,” Appl. Biochem. Microbiol. 53, 594–599 (2017).CrossRefGoogle Scholar
  27. 27.
    A. E. Urusov, A. V. Petrakova, M. K. Gubaydullina, A. V. Zherdev, S. A. Eremin, D. Kong, L. Liu, C. Xu, and B. B. Dzantiev, “High-sensitivity immunochromatographic assay for fumonisin B1 based on indirect antibody labeling,” Biotechnol. Lett. 39, 751–758 (2017).CrossRefGoogle Scholar
  28. 28.
    L. Lan, Y. Yao, J. Ping, and Y. Ying, “Recent advances in nanomaterial-based biosensors for antibiotics detection,” Biosens. Bioelectron. 91, 504–514 (2017).CrossRefGoogle Scholar
  29. 29.
    V. Gaudin, “Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—a comprehensive review,” Biosens. Bioelectron. 90, 363–377 (2017).CrossRefGoogle Scholar
  30. 30.
    S. Kuppusamy, D. Kakarla, K. Venkateswarlu, M. Megharaj, Y.-E. Yoon, and Y. B. Lee, “Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: a critical view,” Agric. Ecosyst. Environ. 257, 47–59 (2018).CrossRefGoogle Scholar
  31. 31.
    G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci. 241, 20–22 (1973).CrossRefGoogle Scholar
  32. 32.
    G. T. Hermanson, “Antibody modification and conjugation,” in Bioconjugate Techniques, Ed. by G. T. Hermanson, 3rd ed. (Academic, Boston, 2013), Chap. 20, pp. 867–920.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Berlina
    • 1
  • A. V. Bartosh
    • 1
  • D. V. Sotnikov
    • 1
  • A. V. Zherdev
    • 1
  • C. Xu
    • 2
  • B. B. Dzantiev
    • 1
  1. 1.Bach Institute of Biochemistry, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.School of Food Science and TechnologyJiangnan UniversityWuxi, JiangsuP.R. China

Personalised recommendations