Advertisement

Nanotechnologies in Russia

, Volume 13, Issue 7–8, pp 448–451 | Cite as

Assimilation of Multiwall Carbon Nanopipes to Developing Plants

  • A. A. Antsiferova
  • Yu. P. BuzulukovEmail author
  • A. A. Gusev
  • V. F. Demin
  • P. K. Kashkarov
  • E. S. Kormazeva
Materials of the Conference “Nanomaterials and Living Systems” (NLS-2018), Kazan, 2018
  • 8 Downloads

Abstract

The concentration of carbon nanopipes (CNPs) can be detected and quantitatively measured in various matrices, including biological ones, using the methodology of formation of a gamma-emitting radioactive isotope marker in a CNP. The methodology has been tested in a 10-day experiment on the sprouting of wheat seeds on an artificial substrate damped by a water suspension of radioactively marked Taunit-M multiwall CNPs (MCNP) (Russia). Changes in the activities of samples of developing plant organs—root system, coleoptile and root base, and stem with leaves—makes it possible to define the quantitative concentration of MCNPs passing from a substrate with a known concentration of the given nanomaterial into a plant. The results show promising outlooks for applying this methodology for quantitative measurements of CNP mass/concentration in various media and biological objects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yu. Godymchuk, G. G. Savel’ev, and A. P. Zykova, Ecology of Nanomaterials, The School-Book (BINOM, Labor. Znanii, Moscow, 2012) [in Russian].Google Scholar
  2. 2.
    S. Bellucci, Nanoparticles and Nanodevices in Biological Applications, Vol. 7 of Lect. Notes Nanoscale Sci. Technol. (Springer, Berlin, 2009).CrossRefGoogle Scholar
  3. 3.
    Ch. S. S. R. Kumar, Nanomaterials: Toxicity, Health, and Environmental Issues (Wiley-VCH, Weinheim, 2006).Google Scholar
  4. 4.
    C. Larue, M. Pinault, B. Czarny, D. Georgin, D. Jaillard, N. Bendiab, M. Mayne-L’hermite, F. Taran, V. Dive, and M. Carriere, “Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed,” J. Hazard Mater., No. 227, 155–163 (2012).CrossRefGoogle Scholar
  5. 5.
    Q. Zhao, C. Ma, J. C. White, O. P. Dhankher, X. Zhang, S. Zhang, and B. Xing, “Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants,” Carbon 114, 661–670 (2017).CrossRefGoogle Scholar
  6. 6.
    R. V. Raspopov, Yu. P. Buzulukov, V. F. Demin, V. Yu. Solov’ev, V. S. Kalistratova, I. V. Gmoshinskii, and S. A. Khotimchenko, “The bioavailability zinc oxide nanoparticles. Study methods of radionuclide indicator,” Vopr. Pitan. 79 (6), 14–18 (2010).Google Scholar
  7. 7.
    Yu. P. Buzulukov, I. V. Gmoshinskii, V. F. Demin, N. S. Marchenkov, and R. V. Raspopov, “Experimental studies of the pharmacokinetics of silver nanoparticles in the body of laboratory rats by the method of radioactive indicators,” in Proceedings of the 3rd Eurasian Congress on Medical Physics and Engineering Medical Physics-2010, June 21–25, 2010, Moscow, Vol. 3, pp. 238–239.Google Scholar
  8. 8.
    V. A. Shipelin, A. A. Shumakova, A. G. Masyutin, A. I. Chernov, E. D. Obraztsova, Yu. S. Sidorova, I. V. Gmoshinskii, and S. A. Khotimchenko, “Subacute oral toxicity in vivo of multi-walled carbon nanotubes,” Vopr. Pitan. 86 (4), 61–69 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Antsiferova
    • 1
    • 5
  • Yu. P. Buzulukov
    • 1
    Email author
  • A. A. Gusev
    • 2
    • 3
  • V. F. Demin
    • 1
  • P. K. Kashkarov
    • 1
    • 4
    • 5
  • E. S. Kormazeva
    • 1
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Derzhavin Tambov State UniversityTambovRussia
  3. 3.National University for Science and Technology “MISiS”MoscowRussia
  4. 4.Moscow State UniversityMoscowRussia
  5. 5.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia

Personalised recommendations