Nanotechnologies in Russia

, Volume 12, Issue 11–12, pp 650–657 | Cite as

Study of the Regimes of Scratching Probe Nanolithography

  • R. V. Tominov
  • V. A. Smirnov
  • N. E. Chernenko
  • O. A. Ageev
Article
  • 3 Downloads

Abstract

This work presents experimental investigations into the film deposition of photoresist FP-383 by the centrifugal method and nanoscale profiling on them using scratching probe nanolithography (SPN). It is shown that a diminishing photoresist/thinner volume ratio (FP-383/RPF-383F) and an increase in rotational speed from 1000 to 5000 rpm lead to a decrease in film thickness from 1083 ± 17 to 20 ± 2 nm. For a photoresist/thinner volume ratio of 1: 15, an increase in rotational speed from 1000 to 5000 rpm leads to the film thickness and surface roughness decreasing from 50 ± 6 to 20 ± 2 nm and from 3.16 ± 0.20 to 2.23 ± 0.10 nm, respectively. The nanostructure-manufacturing technique on the thin photoresist film surface is developed using SPN, through which nanostructures with diameters from 380 ± 32 to 16 ± 3 nm are manufactured on 20-nm-thick FP-383 film. The results can be useful for developing nanostructures of micro- and nanoelectronics micro- and nanosystems using scanning probe microscope.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Fahrner, Nanotechnology and. Nanoelectronics. Materials, Devices, Measurement Techniques (Springer, Berlin, Heidelberg, 2005).CrossRefGoogle Scholar
  2. 2.
    B.-G. Park, S. W. Hwang, and Y. J. Park, Nanoelectronic Devices, Vol. 1 of Pan Stanford Textbook Series on Nanotechnology (Pan Stanford, Singapore, 2012).Google Scholar
  3. 3.
    J. H. Bruning, “Optical lithography … 40 years and holding,” Proc. SPIE 6520, 652004 (2007).CrossRefGoogle Scholar
  4. 4.
    A. A. Bukharaev, D. A. Bizyaev, N. I. Nurgazizov, and T. F. Khanipov, “Fabrication of magnetic micro-and nanostructures by scanning probe lithography,” Russ. Microelectron. 41, 78–84 (2012).CrossRefGoogle Scholar
  5. 5.
    O. A. Ageev, N. I. Alyab’eva, B. G. Konoplev, V. V. Polyakov, and V. A. Smirnov, “Photoactivation of the processes of formation of nanostructures by local anodic oxidation of a titanium film,” Semiconductors 44, 1703–1708 (2010).CrossRefGoogle Scholar
  6. 6.
    O. A. Ageev, S. V. Balakirev, Al. V. Bykov, et al., “Development of new metamaterials for advanced element base of micro-and nanoelectronics, and microsystem devices,” in Advanced Materials—Manufacturing, Physics, Mechanics, and Applications, Ed. by I. A. Parinov, Shun-Hsyung Chang, and V. Yu. Topolov (Springer International, Switzerland, 2016), pp. 563–580.Google Scholar
  7. 7.
    V. I. Avilov, O. A. Ageev, A. S. Kolomiitsev, B. G. Konoplev, V. A. Smirnov, and O. G. Tsukanova, “The formation and study of the memristors matrix based on titanium oxide by using probe nanotechnologies methods,” Semiconductors 48, 1757–1762 (2014).CrossRefGoogle Scholar
  8. 8.
    R. Garcia, A. W. Knoll, and E. Riedo, “Advanced scanning probe lithography,” Nat. Nanotechnol. 9, 577–587 (2014).CrossRefGoogle Scholar
  9. 9.
    Q. Tang, S.-Q. Shi, and L. Zhou, “Nanofabrication with atomic force microscopy,” J. Nanosci. Nanotechnol. 4, 948–963 (2004).CrossRefGoogle Scholar
  10. 10.
    D. A. Bizyaev, A. A. Bukharaev, S. A. Ziganshina, T. F. Khanipov, and A. P. Chuklanov, “Creation of lithographic masks using a scanning probe microscope,” Russ. Microelectron. 44, 389–398 (2015).CrossRefGoogle Scholar
  11. 11.
    Y.-J. Chen, J.-H. Hsu, and H.-N. Lin, “Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process,” Nanotecnology 16, 1112–1115 (2005).CrossRefGoogle Scholar
  12. 12.
    I.-H. Sung and D.-E. Kim, “Nano-scale patterning by mechano-chemical scanning probe lithography,” Appl. Surf. Sci. 239, 209–221 (2005).CrossRefGoogle Scholar
  13. 13.
    D. A. Bizyaev, A. A. Bukharaev, D. V. Lebedev, N. I. Nurgazizov, and T. F. Khanipov, “Nickel nanoparticles and nanowires obtained by scanning probe lithography using point indentation technique,” Tech. Phys. Lett. 38, 645–648 (2012).CrossRefGoogle Scholar
  14. 14.
    O. Akhavan and M. Abdolahad, “Physical bounds of metallic nanofingers obtained by mechano-chemical atomic force microscope nanolithography,” Appl. Surf. Sci. 255, 3513–3517 (2009).CrossRefGoogle Scholar
  15. 15.
    O. Akhavan and M. Abdolahad, “Mechano-chemical AFM nanolithography of metallic thin films: a statistical analysis,” Curr. Appl. Phys. 10, 1203–1210 (2010).CrossRefGoogle Scholar
  16. 16.
    D. Y. Yong, D. W. Gao, Z. J. Hu, X. S. Zhao, and J. C. Yan, “Polymer nanostructured components machined directly by the atomic force microscopy scratching method,” Int. J. Precis. Eng. Manuf. 13, 269–273 (2011).Google Scholar
  17. 17.
    W. M. Moreau, Semiconductor Lithography Principles: Practices and Materials (Plenum, New York, 1988), Ch.1.CrossRefGoogle Scholar
  18. 18.
    V. V. Martynov and T. E. Bazarova, Litographic Processes (Vyssh. Shkola, Moscow, 1990), p. 128 [in Russian].Google Scholar
  19. 19.
    S. F. Lyuksyuto and R. A. Vaia, “Electrostatic nanolithography in polymers using atomic force microscopy,” Nat. Mater. 2, 468–472 (2003).CrossRefGoogle Scholar
  20. 20.
    S. S. Hassani and H. R. Aghabozorg, “Nanolithography study using scanning probe microscope,” in Recent Advances in Nanofabrication Techniques and Applications, Ed. by Bo Cui (InTech, Croatia, 2011), pp. 458–471.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. V. Tominov
    • 1
  • V. A. Smirnov
    • 1
  • N. E. Chernenko
    • 1
  • O. A. Ageev
    • 1
  1. 1.Southern Federal University, Institute of Nanotechnologies, Electronics and Electronic Equipment EngineeringREC NanotechnologiesTaganrogRussia

Personalised recommendations