Nanotechnologies in Russia

, Volume 12, Issue 11–12, pp 643–649 | Cite as

The Effect of Nitrogen Pressure in the Reaction Chamber on the Parameters of Titanium Nitride Obtained by Plasmodynamic Synthesis

  • A. A. Sivkov
  • D. Yu. Gerasimov
  • A. A. Evdokimov
Article
  • 2 Downloads

Abstract

In this study the influence of nitrogen pressure in the reaction chamber on the parameters of the synthesized nanosized TiN using plasmodynamic direct synthesis method has been investigated. It is shown that the pressure factor is not important in the synthesis of a nanosized product.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Gunter and A. Kumpmann, “Ultrafine oxide powders preparated by inert gas evaporation,” Nanostruct. Mater. 1, 27–30 (1992).CrossRefGoogle Scholar
  2. 2.
    J. Maxwell, R. Krishnan, and S. Haridas, “High pressure, convectively-enhanced laser chemical vapor deposition of titanium,” in Proc. of the 8th Symposium on Solid Freeform Fabrication, Austin, Texas, USA, Aug. 11–13, 1997, pp. 497–504.Google Scholar
  3. 3.
    A. Kar, M. N. Azer, and J. Mazumder, “Three-dimensional transient mass transfer model for laser chemical vapor deposition of titanium on stationary finite slabs,” J. Appl. Phys. 69, 757–766 (1991).CrossRefGoogle Scholar
  4. 4.
    O. Conde, A. Kar, and J. Mazumder, “Laser chemical vapor deposition of TiN dot: a comparison of theoretical and experimental results,” J. Appl. Phys. 72, 754–761 (1992).CrossRefGoogle Scholar
  5. 5.
    I. V. Shmshkovskii, S. E. Zaknev, and L. P. Kholmanov, “Layer-by-layer synthesis of volume parts made from ti by SLS method,” Fiz. Khim. Obrab. Mater., No. 3, 71–78 (2005).Google Scholar
  6. 6.
    M. I. Alymov and V. A. Zelenskii, Production Methods and Physico-Mechanical Properties of Bulk Nanocrystalline Materials (MIFI, Moscow, 2005) [in Russian].Google Scholar
  7. 7.
    New Trends in Materials Techology, Ed. by Yu. A. Osip’yan and A. Khauff (Mashinostroenie, Moscow, 1990) [in Russian].Google Scholar
  8. 8.
    Yu. A. Kotov and N. A. Yavorskii, “Study of particles formed at the electrical explosion of conductors,” Fiz. Khim. Obrab. Mater., No. 4, 24–30 (1978).Google Scholar
  9. 9.
    V. V. Ivanov, Y. A. Kotov, O. H. Samatov, et al., “Synthesis and dynamic compaction of ceramic nanopowders by techniques based on electric pulsed powder,” Nanostruct. Mater. 6, 287–290 (1995).CrossRefGoogle Scholar
  10. 10.
    Wonback Kim, Jcshin Park, Changyul Suh, Sungwook Cho, Sujcong Lee, and In-Jin Shon, “Synthesis of TiN nanoparticles by explosion of Ti wire in nitrogen gas,” Mater. Trans. 50, 2897–2899 (2009).CrossRefGoogle Scholar
  11. 11.
    Kazuyuki Hokamoto, Naoyuki Wada, Ryuichi Tomoshige, Shoichiro Kai, and Yasuhiro Ujimoto, “Synthesis of TiN powders through electrical wire explosion in liquid nitrogen,” J. Alloys Compd. 485, 573–576 (2009).CrossRefGoogle Scholar
  12. 12.
    S. A. Gubin, V V. Odintsov, and V. I. Pepekin, “Thermodynamical calculation of ideal and non-ideal detonation,” Fiz. Goreniya Vzryva 23, (4), 75–84 (1987).Google Scholar
  13. 13.
    A. M. Staver, N. V. Gubareva, A. I. Lyamkin, and E. A. Petrov, “Ultradisperse diamond powders made by the use of explosion energy,” Fiz. Goreniya Vzryva 20, (5), 100–103 (1984).Google Scholar
  14. 14.
    A. I. Lyamkin, E. A. Petrov, A. P. Ershov, et al., “Diamond production from explosives,” Dokl. Akad. Nauk SSSR 302, 611–613 (1988).Google Scholar
  15. 15.
    S. Yu. Ganigin, I. D. Ibatullin, M. V. Nenashev, and K. P. Yakunin, “Synthesis of solid alloy substances during detonation spraying process,” Izv. Samar. Nauch. Tsentra Ross. Akad. Nauk 15, 451–454 (2013).Google Scholar
  16. 16.
    B. H. Troitskii, S. V. Gurov, and V. I. Berestenko, “Peculiarities of production of highly dispersed powders of nitrides of iV group metals by reduction of chloride in low temperature plasma,” Khim. Vys. Energ. 13, 267–272 (1979).Google Scholar
  17. 17.
    T. N. Miller, “Plasmochemical synthesis and properties of refractory compound powders,” Izv. Akad. Nauk SSSR, Neorg. Mater. 15, 557–562 (1979).Google Scholar
  18. 18.
    T. Ya. Kosolapova, G. H. Makarenko, and D. P. Zyatkevich, “Plasmochemical synthesis of refractory compounds,” Zh. Vseross. Khim. Ob-va im. D. I. Mendeleeva 24, 228–233 (1979).Google Scholar
  19. 19.
    T. N. Miller and Ya. P. Grabis, “Plasmochemical synthesis of refractory nitrides,” in Methods of Preparation, Properties, and Fields of Application of Nitrides (Zinatne, Riga, 1980), pp. 5–6 [in Russian].Google Scholar
  20. 20.
    T. N. Miller, “Some properties of highly dispersed powders of refractory nitrides,” in Nitrides: Methods of Preparation, Properties, and Fields of Application (Zinatne, Riga, 1984), Vol. 1, pp. 8–9 [in Russian].Google Scholar
  21. 21.
    R. W. Chorley and P. W. Lednor, “Synthetic routes to high-surface area nonoxide materials,” Adv. Mater. 3, 474–485 (1991).CrossRefGoogle Scholar
  22. 22.
    R. Uyeda, “Studies of ultrafine particle in Japan: crystallography. methods of preparation and technological applications,” Progr. Mater. Sci. 35, 1–96 (1991).CrossRefGoogle Scholar
  23. 23.
    S. S. Kiparisov and O. V. Padalko, Equipment in Powder Metallurgical Enterprises (Metallurgiya, Moscow, 1988) [in Russian].Google Scholar
  24. 24.
    Yu. V. Blagoveshchenskii and S. A Panfilov, “Jetplasma processes for powder metallurgy,” Elektrometallurgiya, No. 3, 33–41 (1999).Google Scholar
  25. 25.
    J. Muhlbuch, E. Recknagel, and ?fE. Sattler, “Inert gas condensation of Sb, Bi and Pb clusters,” Surf. Sci. 106, 188–194 (1981).CrossRefGoogle Scholar
  26. 26.
    Â. Gunther and A. Kampmann, “Ultrafine oxide powders prepared by inert gas evaporation,” Nanostruct. Mater. 1, 27–30 (1992).CrossRefGoogle Scholar
  27. 27.
    H. Hahn and R. S. Averback, “The production of nanocrystalline powders by magnetron sputtering,” Appl. Phys. 67, 1113–1115 (1990).CrossRefGoogle Scholar
  28. 28.
    G. Skandan, H. Hahn, and J. C. Parker, “Nanostructured yttria: synthesis and relation to microstructure and properties,” Scripta Metal. Mater. 25, 2389–2393 (1991).CrossRefGoogle Scholar
  29. 29.
    M. S. El-Shall, W. Slack, W. Vann, D. Kane, and D. Hanley, “Synthesis of nanoscale metal oxide particles using laser vaporization/condensation in a diffusion cloud chamber,” J. Phys. Chem. 98, 3067–3070 (1994).CrossRefGoogle Scholar
  30. 30.
    M. S. El-Shall, D. Gravier, U. Pernisz, and M. I. Baraton, “Synthesis and characterization of nano-scale zinc oxide particles: I. Laser vaporization/condensation technique,” Nanostruct. Mater. 6, 297–300 (1995).CrossRefGoogle Scholar
  31. 31.
    V. F. Petrunin, V. A. Pogonin, L. I. Trusov, A. C. Ivanov, and V. N. Troitskii, “Structure of ultradisperse particles of titanium nitride,” Izv. Akad. Nauk SSSR, Neorg. Mater. 17, 59–63 (1981).Google Scholar
  32. 32.
    V. F. Petrunin, Yu. G. Andreev, T. H. Miller, and Ya. P. Grabis, “Neutron diffraction analysis of ultradisperse powders of zirconium nitride,” Poroshk. Metall., No. 9, 90–97 (1987).Google Scholar
  33. 33.
    V. F. Petrunin, Yu. G. Andreev, V. N. Troitskii, and O. M. Grebtsova, “Neutron diffraction investigation of niobium nitrides in ultrafine grained state,” Poverkhnost’, No. 11, 143–148 (1982).Google Scholar
  34. 34.
    I. V. Blinkov, A. V. Ivanov, and I. E. Orekhov, “Synthesis of ultrafine powders of carbides in a pulsed plasma,” Fiz. Khim. Obrab. Mater., No. 2, 73–76 (1992).Google Scholar
  35. 35.
    N. V. Alekseev, A. B. Samokhin, E. N. Kurkin, K. N. Agafonov, and Yu. V. Tsvetkov, “Synthesis of the alumina nanoparticles in the process of metal oxidation in thermal plasma flow,” Fiz. Khim. Obrab. Mater., No. 3, 33–38 (1997).Google Scholar
  36. 36.
    J. S. Haggerty and W. R. Cannon, “Sinterable powders from laser-driven reactions,” in Laser-Induced Chemical Processes, Ed. by J. I. Steinfeld (Plenum, New York, London, 1981).Google Scholar
  37. 37.
    L. D. Casey and J. S. Haggerty, “Laser-induced vaporphase synthesis of boron and titanium diboride powders,” J. Mater. Sci. 22, 737–744 (1987).CrossRefGoogle Scholar
  38. 38.
    R.A. Bauer, J. G. M. Becht, F. E. Kruis, et al., “Laser synthesis of low-agglomerated submicrometer silicon nitride powders from chlorinated silanes,” J. Am. Ceram. Soc. 74, 2759–2768 (1991).CrossRefGoogle Scholar
  39. 39.
    N. V. Karlov, M. A. Kirichenko, and B. S. Luk’yanchuk, “Macroscopic kinetics of thermochemical processes on laser heating: current state and prospects,” Russ. Chem. Rev. 62, 203 (1993).CrossRefGoogle Scholar
  40. 40.
    T. Yoshida, A. Kawasaki, K. Nakagawa, and K. Akashi, “The synthesis of ultrafine titanium nitride in an r.f. plasma,” J. Mater. Sci. 14, 1624–1630 (1979).CrossRefGoogle Scholar
  41. 41.
    P. V. Ananthapadmanabhana, P. R Taylorb, and W. Zhub, “Synthesis of titanium nitride in a thermal plasma reactor,” J. Alloys Compd. 287, 126–129 (1999).CrossRefGoogle Scholar
  42. 42.
    M. Kakatia, B. Boraa, S. Sarmab, B. J. Saikiaa, T. Shripathic, U. Deshpandec, A. Dubeyc, G. Ghoshd, and A. K. Dase, “Synthesis of titanium oxide and titanium nitride nano-particles with narrow size distribution by supersonic thermal plasma expansion,” Vacuum 82, 833–841 (2008).CrossRefGoogle Scholar
  43. 43.
    A. A. Sivkov, D. Yu. Gerasimov, and A. A. Evdokimov, “Influence of the supplied energy on electroerosion recovery of material in an electrotechnical accelerator,” Instrum. Exp. Tech. 57, 222–225 (2014).CrossRefGoogle Scholar
  44. 44.
    A. A. Sivkov, D. Y. Gerasimov, A. S. Saigash, and A. A. Evdokimov, “Synthesis of superhard nanodispersed titanium compounds in a magnetoplasma accelerator operating in pulse-periodic regime,” Russ. Phys. J. 54, 1160–1166 (2012).CrossRefGoogle Scholar
  45. 45.
    A. A. Sivkov, D. Yu. Gerasimov, A. S. Saigash, and A. A. Evdokimov, “Studies of multiple and frequency operation of a coaxial magnetoplasma accelerator for production of superhard nanodispersed titanium compounds,” Russ. Electr. Eng. 83, 39–44 (2012).CrossRefGoogle Scholar
  46. 46.
    A. A. Sivkov, D. Y. Gerasimov, and A. A. Evdokimov, “Manufacture of an ultrafine-grained TiN-Cu composition using an erosion-type coaxial hybrid magnetoplasma accelerator,” Russ. Phys. J. 58, 1063–1067 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Sivkov
    • 1
  • D. Yu. Gerasimov
    • 1
  • A. A. Evdokimov
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations