Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Study of Structural, Thermal and Dielectric Modulus of PPy–DBSA–Zirconium Oxide Composites

  • 6 Accesses

Abstract

Polypyrrole (PPy) doped with Dodecylbenzene Sulfonic Acid (DBSA) and also mixed with different weight percentage of zirconium oxide (ZrO2) nanoparticles (2, 4 and 8%) to get the PPy–DBSA–ZrO2 composites by in situ polymerization method. The crystallinity of PPy–DBSA–ZrO2 composites due to incorporation of ZrO2 has been confirmed by powder X-ray diffraction pattern. The SEM also confirms the structure of dual phase of platelet as well as “egg shell” structure in PPy–DBSA–ZrO2. Moreover, SEM micrographs exhibit that the composites are in the form of elongated chains; increase in the particles size as compared with pure PPy and ZrO2 is also observed. TGA suggests that thermal stability was found to be improved by incorporation of ZrO2 in PPy–DBSA. The dielectric properties studies show us that there is strong interaction between PPy–DBSA and ZrO2 nanoparticles. This study suggests that the PPy–DBSA–ZrO2 composites will behave as semiconductor material and can be used in the electronic industries.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    G. Inzelt, J. Solid State Electrochem. 15, 1711 (2011).

  2. 2

    H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc. Chem. Commun. 1, 578 (1977).

  3. 3

    S. Ramakrishnan, Resonance. 2 (11), 48 (1997).

  4. 4

    T. Miura, R. Tao, S. Shibata, T. Umeyama, T. Tachikawa, H. Imahori, and Y. Kobori, J. Am. Chem. Soc. 138, 5879 (2016).

  5. 5

    K. R. Reddy, K. V. Karthik, S. B. Benaka Prasad, S. K. Soni, H. M. Jeong, and A. V. Raghu, Polyhedron. 120, 169 (2016).

  6. 6

    K. R. Reddy, K. P. Lee, and A. I. Gopalan, J. Nanosci. Nanotechnol. 7, 3117 (2007).

  7. 7

    Y. P. Zhang, S. H. Lee, K. R. Reddy, A. I. Gopalan, and K.-P. Le, J. Appl. Polym. Sci. 104, 2743 (2007).

  8. 8

    K. R. Reddy, K.-P. Lee, and A. I. Gopalan, J. Appl. Polym. Sci. 106, 1181 (2007).

  9. 9

    K. R. Reddy, K.-P. Lee, A. I. Gopalan, and A. M. Showkat, Polym. J. 38, 349 (2006).

  10. 10

    K. R. Reddy, K.-P. Lee, Y. Lee, and A. I. Gopalan, J. Colloid Interface Sci. 335, 34 (2009).

  11. 11

    M. Hassan, K. R. Reddy, E. Haque, S. N. Faisal, S. Ghasemi, A. I. Minett, and V. G. Gomes, Compos. Sci. Technol. 98, 1 (2014).

  12. 12

    K. K. Reddy, R. H. M. Jeong, Y. Lee, and A. V. Raghu, J. Polym. Sci. Polym. Chem. 48, 1477 (2010).

  13. 13

    A. K. Bakhshi, Bull. Mater. Sci. 18, 469 (1995).

  14. 14

    M. Fatih Koleli, Y. Dudukcu, and Arslan, Turkish J. Chem. 24, 333 (2000).

  15. 15

    M. Angelopoulos, IBM J. Res. Dev. 45, 57 (2001).

  16. 16

    A. J. Heeger, Rev. Mod. Phys. 73, 681 (2000).

  17. 17

    T. P. Radhakrishnan, Resonance. 1, 62 (2001).

  18. 18

    T. V. Vernitskaya and O. N. Efimov, Russ. Chem. Rev. 66, 443 (1997).

  19. 19

    E. Buhks and I. M. Hodge, J. Chem. Phys. 83, 5976 (1985).

  20. 20

    T. A. Skotheim, Handbook of Conducting Polymers (Marcel Dekker, New York, 1986), Vols. 1–2.

  21. 21

    M. Campos, F. R. Simoes, and E. C. Pereira, Sens. Actuators, B. 125, 158 (2007).

  22. 22

    Y. J. Loi, D. C. Degrott, J. L. Schindler, C. R. Kannewurf, and M. G. Kanatzidis, Adv. Mater. 5, 369 (1993).

  23. 23

    W. Chen, X. W. Li, G. Xue, Z. Q. Wang, and W. Q. Zou, Appl. Surf. Sci. 218, 215 (2003).

  24. 24

    Y. C. Liu and T. C. Chuang, J. Phys. Chem. B. 107, 12383 (2003).

  25. 25

    B. Basu, Int. Mater. Rev. 50, 239 (2005).

  26. 26

    I. Berkby and R. Steven, Key. Eng. Mater. 527, 122 (1996).

  27. 27

    W. Khaodee, B. Jongsomjit, P. Praserthdam, Sh. Goto, and S. Assabumrungrat, J. Mol. Catal., A: Chem. 280, 35 (2008).

  28. 28

    G. Tian, K. Pan, H. Fu, L. Jing, and W. Zhou, J. Hazard. Mater. 166, 939 (2009).

  29. 29

    A. Shakoor, Preparation, characterization and studies of conducting polymer composites and blends (2009). http://prr.hec.gov.pk/jspui/handle/123 456 789/1334.

  30. 30

    W. L. Bragg, Cambridge Philos. Soc. 17, 43 (1913).

Download references

Author information

Correspondence to M. Irfan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Shakoor, A., Majid, A. et al. Study of Structural, Thermal and Dielectric Modulus of PPy–DBSA–Zirconium Oxide Composites. Russ. J. Phys. Chem. B 13, 1057–1063 (2019). https://doi.org/10.1134/S1990793119060198

Download citation

Keywords:

  • PPy
  • DBSA
  • ZrO2
  • Dielectric Modulus