Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Role of Water-Soluble Forms of Toxicants in the Formation of Toxic Properties of Natural and Waste Water

  • 1 Accesses


Cytogenetic methods based on the analysis of chromosome changes in somatic mammalian cells are promising techniques for the early recognition of toxic effects arising from anthropogenic pollution of environmental objects. The genetic changes in somatic cells are an integral parameter of the mutagenic effect of the environment and the effectiveness of the immune system of organisms. In this work, the method of analysis of toxic properties based on determining the frequency and types of chromosomal aberrations during the short-term (within 2 h) exposure of mammalian cell cultures to a test water sample is used to study the toxic properties of natural and waste water with different levels of anthropogenic pollution. It is shown that the contribution to the genotoxicity of the analyzed native water samples from water-soluble substances that cannot be extracted with a mixture of hexane and ethyl ether can reach 50–75%, while the contribution of organic substances extracted with organic solvents can be only 2–3%. Water-soluble compounds of reduced sulfur play a key role in the formation of toxic properties of natural and waste waters. Using benzo[a]pyrene and 3,3',4,4'-tetrachlorobiphenyl (PCB 77) as an example, it is found that the genotoxic properties of even the most hydrophobic toxicants are determined by their dissolved form and can manifest themselves starting from a concentration of 10 ng/L. A comparative analysis with the Ames test, which is widely used in the study of the mutagenic activity of various toxicants, indicates that the cytogenetic method is a much more informative and sensitive method for monitoring the chemical safety of water bodies.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Guide to Short-Term Tests for Detecting Mutagenic and Carcinogenic Chemicals, Vol. 51 of Environmental Health Hygienic Criteria (WHO, Geneva, 1985).

  2. 2

    D. Scott, S. M. Galloway, R. R. Marshall, et al., Mutat. Res. 257, 147 (1991).

  3. 3

    M. J. Ishidate, M. C. Harnois, and T. Sofuni, Mutat. Res. 195, 151 (1988).

  4. 4

    B. J. Dean and N. D. Danford, Mutagenicity Testing: A Practical Approach, Ed. by S. Venitt and J. M. Parry (IRL, Oxford, 1985), p. 187.

  5. 5

    M. J. Ishidate, Chromosomal Aberration Test in vitro (L. I. C., Tokyo, 1987).

  6. 6

    A. Matsuoka, M. Ozaki, K. Takeshita, et al., Mutagenesis. 12, 365 (1997).

  7. 7

    F. W. Whitehead, R. H. San, and H. F. Stich, Mutat. Res. 111, 209 (1983).

  8. 8

    B. N. Ames, J. Mccann, and E. Yamasaki, Mutat. Res. 31, 347 (1975).

  9. 9

    M. Balimandawa, C. de Meester, and A. Leonard, Mutat. Res. 321, 7 (1994).

  10. 10

    D. M. Maron and B. N. Ames, Mutat. Res. 113, 173 (1983).

  11. 11

    D. E. Levin, L. J. Marnett, and B. N. Ames, Proc. Natl. Acad. Sci. U. S. A. 81, 4457 (1984).

  12. 12

    D. A. Pagano and E. Zeiger, in WHO Report of the Int. Programme on Chemical Safety’s Collaborative Study on in Vitro Assays, Ed. by J. V. Ashby (UNBP ILO, 1988), Vol. 1, p. 2.332.

  13. 13

    L. C. Waters, R. L. Schenley, B. A. Owen, et al., Environ. Mol. Mutagen. 14, 254 (1989).

  14. 14

    L. B. Christian and S. M. Galloway, Mutat. Res. 292, 3 (1993).

  15. 15

    E. M. Silberhorn, H. P. Glauert, and L. W. Robertson, Crit. Rev. Toxicol. 20, 440 (1990).

  16. 16

    M. T. S. Hsia, F. S. D. Lin, and J. R. Allen, Res. Commun. Chem. Pathol. Pharmacol. 21, 485 (1978).

  17. 17

    T. Vartiainen and A. Liimatainen, Mutat. Res. 169, 29 (1986).

  18. 18

    B. Wigilius, H. Boren, A. Grimvall, et al., Total Environ. 74, 75 (1988).

  19. 19

    S. M. Galloway, M. J. A. Aardema, M. J. Ishidate, et al., Mutat. Res. 312, 241 (1994).

  20. 20

    N. F. Zakharov, E. S. Kakpakova, and N. A. Egolina, Tsitologiya. 8, 193 (1966).

  21. 21

    Yu. I. Skurlatov, L. S. Ernestova, E. V. Shtamm, G. F. Yaskevich, and A. V. Sevan’kaev, in Proceedings of the Conference on ConSoil 2000 (Thomas Telford, London, 2000), Vol. 2, p. 418.

  22. 22

    R. D. Callander and J. Ashby, in WHO Report of the Int. Programme on Chemical Safety’s Collaborative Study on in Vitro Assays, Ed. by J. V. Ashby (UNBP ILO, 1988), Vol. 1, p. 2.329.

  23. 23

    E. V. Shtamm, Yu. I. Skurlatov, L. S. Ernestova, I. S. Baikova and M. V. Dyubanov, Russ. J. Phys. Chem. B. 11, 635 (2017).

  24. 24

    E. V. Shtamm, B. N. Frog, Yu. I. Skurlatov, et al., Acta Hydrochim. Hydrobiol. 30, 256 (2002).

  25. 25

    E. V. Shtamm, Yu. I. Skurlatov, N. B. Kozlova, N. I. Zaitseva, and E. V. Aleksandrova, Water Resour. 38, 237 (2011).

  26. 26

    B. N. Frog, Yu. I. Skurlatov, E. V. Shtamm, and E. V. Vichutinskaya, Vestn. MGSU. 6, 105 (2012).

  27. 27

    E. V. Shtamm, Yu. I. Skurlatov, V. O. Shvydkii, I. S. Baikova, and E. V. Vichutinskaya, Russ. J. Phys. Chem. B. 9, 421 (2015).

Download references


This study was conducted within Program of Fundamental Research no. 46.15 of the Institute of Chemical Physics, Russian Academy of Sciences, State Assignment no. 0082-2014-0005. State registration number in the Center of Information Technologies and Systems is AAAA-A17-117091220076-4.

Author information

Correspondence to E. V. Stamm.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stamm, E.V., Skurlatov, Y.I., Roshchin, A.V. et al. Role of Water-Soluble Forms of Toxicants in the Formation of Toxic Properties of Natural and Waste Water. Russ. J. Phys. Chem. B 13, 986–992 (2019).

Download citation


  • anthropogenic pollution
  • water-soluble forms of toxicants
  • native water samples
  • benzo[a]pyrene
  • PCB 77
  • biotesting
  • genotoxicity
  • chromosomal aberrations
  • Ames test