Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Hydrothermal Synthesis Conditions on the Metal–Polymer System Structure and the Metallic Phase Composition

Abstract

Nickel- and cobalt-containing particles immobilized on a polymer support (hypercrosslinked polystyrene) by the hydrothermal method are studied. The composition, structure, and morphology of the synthesized metal–polymer composites are analyzed. It is shown that hydrothermal synthesis provides the formation of metal–polymer composites with a uniformly distributed metal-containing phase without significant changes in the composition and structure of the polymer support. It is found that, under conditions of superheated water, the pore structure of the support undergoes rearrangement to form pores with a diameter of 20–100 nm; this is one of the key factors for many catalytic processes involving large molecules.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    A. Y. Stakheev and L. M. Kustov, Appl. Catal. A 188, 3 (1999).

  2. 2

    C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev. 105, 1025 (2005).

  3. 3

    F. Mariño, C. Descorme, and D. Duprez, Appl. Catal. B: Environ. 58, 175 (2005).

  4. 4

    J. D. Aiken and R. G. Finke, J. Mol. Catal. A: Chem. 145, 1 (1999).

  5. 5

    B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, Chem. Rev. 104, 3893 (2004).

  6. 6

    D. P. Long, J. M. Blackburn, and J. J. Watkins, Adv. Mater. 12, 913 (2000).

  7. 7

    Y. Zhang and C. Erkey, J. Supercrit. Fluids. 38, 252 (2006).

  8. 8

    F. Cansell and C. Aymonier, J. Supercrit. Fluids. 47, 508 (2009).

  9. 9

    H. Hayashi and Y. Hakuta, Materials 3, 3794 (2010).

  10. 10

    N. K. V. Nadimpalli, R. Bandyopadhyaya, and V. Runkana, Fluid Phase Equilib. 456, 33 (2018).

  11. 11

    E. Lester, P. Blood, J. Denyer, et al., J. Supercrit. Fluids. 37, 209 (2006).

  12. 12

    A. A. Galkin, B. G. Kostyuk, N. N. Kuznetsova, et al., Kinet. Catal. 42, 154 (2001).

  13. 13

    J. Otsu and Y. Oshima, J. Supercrit. Fluids. 33, 61 (2005).

  14. 14

    R. B. Yahya, H. Hayashi, T. Nagase, et al., Chem. Mater. 13, 842 (2001).

  15. 15

    M. Donohue and G. L. Aranovich, Adv. Colloid Interface Sci. 76, 137 (1998).

  16. 16

    V. Yu. Doluda, E. M. Sulman, V. G. Matveeva, et al., Top. Catal. 56, 688 (2013).

  17. 17

    V. N. Sapunov, A. A. Stepacheva, E. M. Sulman, et al., J. Ind. Eng. Chem. 46, 426 (2017).

  18. 18

    A. L. Smirnova, Y.-L. Hu, L. Zhang, et al., ECS Trans. 19 (21), 9 (2009).

  19. 19

    A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart, and N. S. McIntyre, Surf. Sci. 600, 1771 (2006).

  20. 20

    M. Wyn Roberts and R. St. C. Smart, J. Chem. Soc., Faraday Trans. 1 80, 2957 (1984).

  21. 21

    A. N. Mansour and C. A. Melendres, Surf. Sci. Spec. 3, 271 (1994).

  22. 22

    M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, and R. St. C. Smart, Surf. Interface Anal. 41, 324 (2009).

  23. 23

    M. C. Biesinger, B. P. Payne, A. P. Grosvenor, et al., Appl. Surf. Sci. 257, 2717 (2011).

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-79-00303) and the Russian Foundation for Basic Research (project nos. 18-29-06004, 19-08-00318, 18-08-00609).

Author information

Correspondence to V. G. Matveeva.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matveeva, V.G., Stepacheva, A.A., Shimanskaya, E.I. et al. Effect of Hydrothermal Synthesis Conditions on the Metal–Polymer System Structure and the Metallic Phase Composition. Russ. J. Phys. Chem. B 13, 1044–1050 (2019). https://doi.org/10.1134/S1990793119060071

Download citation

Keywords:

  • heterogeneous catalyst
  • hypercrosslinked polystyrene
  • hydrothermal synthesis
  • transition metals