Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 6, pp 1011–1019 | Cite as

Assessment of Patterns of the Lower Atmosphere Ozone Concentrations and Meteorological Factors as the Risk Factors for Medical Emergencies in the Population

  • E. V. Evstafeva
  • V. A. Lapchenko
  • A. S. MakarovaEmail author
  • T. F. Burukhina
  • N. K. Abibullaeva
  • I. A. Evstafeva
CHEMICAL PHYSICS OF ECOLOGICAL PROCESSES

Abstract

The article is concerned with an assessment of patterns of lower atmosphere ozone concentrations (LOC) and the relevant meteorological factors, as well as the role of the latter as risk factors for the incidence of medical emergencies, using population of the city of Simferopol as an example. Throughout 2017, average daily LOC in the air substantially exceeded MAC; the seasonal pattern was characterized by two maximums, that is, during the spring and summer periods. The LOC dependence on temperature, humidity, and atmospheric air pressure proved to be statistically significant; its levels were found to be significantly higher with the northeasterly wind compared to the southwesterly (onshore wind). To assess the effects of LOC and other meteorological factors on population health, daily values were compared with the daily statistics on incidence of medical emergencies with respect to the respiratory and cardiovascular systems derived based on the number of emergency ambulance calls in Simferopol. The number of the ambulance calls was determined to be significantly dependent on LOC and the temperature and humidity of the atmospheric air for asthma attacks and acute coronary syndrome and on wind speed for arrhythmia.

Keywords:

lower atmosphere ozone air temperature meteorological factors medical emergencies respiratory and cardiovascular systems 

Notes

FUNDING

This work was supported by Program for Basic Research of the Presidium of the Russian Academy of Sciences as part of the project Development of Recommendations for Adaptation of Various Age Groups of Population to Heat Wave Exposure for 2018–2020. V.A. Lapchenko, researcher at Vyazemsky Karadag Scientific Station—Nature Reserve of RAS—Branch of Kovalevsky Institute of Biology of the Southern Seas of RAS, contributed to the work in the framework of the state Task (no. AAAA 19-119012490044-3).

CONFLIC OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    B. D. Belan, Ozone in the Troposphere, Ed. by V. A. Pogodaev (Inst.Opt. Atmosf. SO RAN, Tomsk, 2010), p. 487 [in Russian].Google Scholar
  2. 2.
    The European Environment. State and Outlook 2010. Synthesis (European Environment Agency, Copenhagen, 2010).Google Scholar
  3. 3.
    E. V. Evstaf’eva, Probl. Anal. Riska. 11 (5), 30 (2014).Google Scholar
  4. 4.
    V. A. Lapchenko and A. M. Zvyagintsev, Prostranstvo Vremya. 2 (16), 254 (2014).Google Scholar
  5. 5.
    M. Amann, D. Derwent, B. Forsberg, O. Hanninen, et al., Healthrisks of Ozone from Long-Range Transboundary Air Pollution (WHO, Regional Office for Europe, 2008). http://www.euro.who.int/_data/assets/pdf_file/ 0005/78647/E91843.pdf.Google Scholar
  6. 6.
    M. J. Harucha and A. S. Legohn, Atmos. Environ. 41, 4559 (2007).CrossRefGoogle Scholar
  7. 7.
    Chun Chen, Bin Zhao, and C. J. Weschler, Environmen. Health Perspect. 120, 235 (2012).CrossRefGoogle Scholar
  8. 8.
    S. N. Kotel’nikov and E. V. Stepanov, Tr. IOFAN. 71, 72 (2015).Google Scholar
  9. 9.
    A. V. Kurkudilova, A. S. Makarova, N. P. Tarasova, et al., Bezopasn. Tekhnosf. 1, 13 (2018).Google Scholar
  10. 10.
    E. G. Vinokurov, T. F. Burukhina, V. A. Kolesnikov, and S. V. Fadina, Theor. Found. Chem. Eng. 46, 486 (2012).CrossRefGoogle Scholar
  11. 11.
    S. V. Fadina, E. G. Vinokurov, T. F. Burukhina, and V. A. Kolesnikov, Theor. Found. Chem. Eng. 47, 593 (2013).CrossRefGoogle Scholar
  12. 12.
    E. G. Vinokurov, V. P. Meshalkin, E. A. Vasilenko, Kh. A. Nevmyatullina, T. F. Burukhina, and V. V. Bondar’, Theor. Found. Chem. Eng. 50, 730 (2016).CrossRefGoogle Scholar
  13. 13.
    V. Yu. Urbakh, Statistical Analysis in Biology and Medicine (Meditsina, Moscow, 1975) [in Russian].Google Scholar
  14. 14.
    M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric Statistical Methods (Wiley, Chichester, 2013; Finansy Statist., Moscow, 1983).Google Scholar
  15. 15.
    GN (Hygiene Standards) No. 2.1.6.3492-17, Maximum allowable concentration (MPC) of pollutants in the air of urban and rural settlements (2018).Google Scholar
  16. 16.
    Europe’s Environment: The Second Assessment (European Environment Agency, 1998), p. 23.Google Scholar
  17. 17.
    M. Al-Hegelan, R. M. Tighe, C. Castillo, and J. W. Hollingsworth, Immunol. Res. 49, 173 (2011).CrossRefGoogle Scholar
  18. 18.
    D. V. Bates, Epidemiology 16, 427 (2005).CrossRefGoogle Scholar
  19. 19.
    M. Bell and F. Dominici, Epidemiology. 17, 223 (2006).CrossRefGoogle Scholar
  20. 20.
    A. Gryparis, B. Forsberg, K. Katsouyanni, et al., Am. J. Respir. Crit. Care Med. 170, 1080 (2004).Google Scholar
  21. 21.
    J. W. Hollingsworth, S. R. Kleeberger, and W. M. Foster, Proc. Am. Thorac. Soc. 4, 240 (2007).Google Scholar
  22. 22.
    M. Longphre, L.-Y. Zhang, J. R. Harkema, and S. R. Kleeberger, J. Appl. Physiol. 86, 341 (1999).CrossRefGoogle Scholar
  23. 23.
    M. Martuzzi, F. Mitis, I. Lavarone, and M. Serinelli, Health Impact of PM10 and Ozone in 13 Italian Cities (WHO, 2006). www.euro.who.int/pubrequest.Google Scholar
  24. 24.
    C. Ren, G. Williams, L. Morawska, K. Mengersen, and S. Tong, Epidemiology. 18 (5), 69 (2007).CrossRefGoogle Scholar
  25. 25.
    V. Srebot, E. AlGianicolo, G. Rainaldi, et al., Cardiovasc. Ultrasound. 7 (30), 1 (2009).  https://doi.org/10.1186/1476-7120-7-30 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Evstafeva
    • 1
  • V. A. Lapchenko
    • 2
  • A. S. Makarova
    • 3
    Email author
  • T. F. Burukhina
    • 3
  • N. K. Abibullaeva
    • 1
  • I. A. Evstafeva
    • 1
  1. 1.V.I. Vernadsky Crimea Federal University, Medical Academy named after Georgievsky, Tauride Academy SimferopolRussia
  2. 2.Vyazemsky Karadag Scientific Station—Nature Reserve of the Russian Academy of Sciences—Branch of Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of SciencesFeodosiyaRussia
  3. 3.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations