Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Heavy Metal Salts on Propylene Oxidation by Methanotrophic Bacteria

Abstract

The effect of heavy metal (HM) (Cu(II), Fe(III), Ni(II), Zn(II)) salts on propylene oxidation by the methane-oxidizing bacteria Methylococcus capsulatus (M) as a process simulating methane oxidation by methanotrophic bacteria is investigated. The reaction begins with the activation of molecular oxygen with subsequent polypropylene oxidation. Kinetic of propylene oxide accumulation affected by HM correlates with oxygen consumption and remained stable. It is found that inhibition effects of heavy metals on propylene adsorption by M. capsulatus (M) membranes differed. EPR-spectra of M. capsulatus (M) membranes indicate the presence of a copper (II) signal with g-factor of 2.05 both before and after exposure to HM. The studied metals may be arranged in the rank order of toxicity for methanotrophic bacteria as follows: Zn > Ni > Fe > Cu. It is shown for the first time that zinc enhances inhibitory effect of other metals. It is revealed that HM at concentrations exceeding TLV at least three times insignificantly delays propylene oxidation, which indicates that this species of bacteria may be promising for the development of biofilters for removal of hydrocarbons (methane, propylene) under conditions of industrial systems and heavy metal pollution.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    D. R. Feldman, W. D. Collins, S. C. Biraud, et al., Nat. Geosci. 11, 238 (2018). https://doi.org/10.1038/s41561-018-0085-9

  2. 2

    J. S. Singh, V. C. Pandey, D. P. Singh, and R. P. Singh, Agric. Ecosyst. Environ. 139, 74 (2010). https://doi.org/10.1016/j.agee.2010.07.003

  3. 3

    E. N. Kaparullina, N. V. Doronina, I. I. Mustakhimov, N. V. Agafonova, and Yu. A. Trotsenko, Microbiology. 86, 113 (2017). https://doi.org/10.7868/S0026365617010086

  4. 4

    Yu. A. Trotsenko and V. N. Khmelenina, Extremophilic Methanotrophs (ONTI PNTs RAN, Pushchino, 2008) [in Russian].

  5. 5

    V. N. Pishchik, N. I. Vorob’ev, N. A. Provorov, and Yu. V. Khomyakov, Microbiology. 85, 257 (2016). https://doi.org/10.7868/S0026365616030113

  6. 6

    L. N. Ul’yanenko, E. V. Reva, and B. I. Synzynys, S-kh. Biol. 52, 183 (2017). https://doi.org/10.15389/agrobiology.2017.1.183rus

  7. 7

    R. I. Gvozdev, I. A. Tukhvatullin, and L. B. Tumanova, Izv. Akad. Nauk, Ser. Biol. 2, 186 (2008).

  8. 8

    D. W. Choi, W. A. Antholine, Y. S. Do, et al., Microbiology. 151, 3417 (2005). https://doi.org/10.1099/mic.0.28169-0

  9. 9

    S. Sirajuddin, D. Barupala, S. Helling, et al., J. Biol. Chem. 289, 21782 (2014). https://doi.org/10.1074/jbc.M114.581363

  10. 10

    C.-Li. Chen, K. H.-C. Chen, S.-C. Ke, et al., J. Inorg. Biochem. 98, 2125 (2004). https://doi.org/10.1016/j.jinorgbio.2004.09.021

  11. 11

    E. A. Saratovskikh, L. A. Korshunova, O. S. Roshchupkina, and Yu. I. Skurlatov, Khim. Fiz. 26 (8), 46 (2007).

  12. 12

    G. I. Karavaiko, G. A. Dubinina, and T. F. Kondrat’eva, Microbiology. 75, 512 (2006).

  13. 13

    I. J. Higgins, D. J. Best, and R. C. Hammond, Nature (London, U.K.). 286, 561 (1980). https://doi.org/10.1038/286561a0

  14. 14

    V. C. Pandey, J. S. Singh, D. P. Singh, and R. P. Singh, Int. J. Environ. Sci. Technol. 11, 241 (2014). https://doi.org/10.1007/s13762-013-0387-9

  15. 15

    M. B. Jenkins, J. H. Chen, D. J. Kadner, and L. W. Lion, Appl. Environ. Microbiol. 60, 3491 (1994).

  16. 16

    M. R. Bruins, S. Kapil, and F. W. Oehme, Ecotoxicol. Environ. Safety. 45, 198 (2000). https://doi.org/10.1006/eesa.1999.1860

  17. 17

    D. W. Choi, Y. S. Do, C. J. Zea, et al., J. Inorg. Biochem. 100, 2150 (2006). https://doi.org/10.1016/j.jinorgbio.2006.08.017

  18. 18

    Yu. A. Trotsenko, K. A. Medvedkova, V. N. Khmelenina, and B. Ts. Eshinimaev, Microbiology. 78, 387 (2009).

  19. 19

    X. Lu, W. Gu, L. Zhao, et al., Sci. Adv. 3, e1700041 (2017). https://doi.org/10.1126/sciadv.1700041

  20. 20

    N. Vita, S. Platsaki, A. Basle, et al., Nature (London, U.K.) 525, 140 (2015). https://doi.org/10.1038/nature14854

  21. 21

    G. E. Kenney, L. M. K. Dassama, M.-E. Pandelia, et al., Science (Washington, DC, U. S.) 359 (2018).

  22. 22

    H. Aimen, A. S. Khan, and N. Kanwal, J. Bioremediat. Biodegrad. 9, 432 (2018). https://doi.org/10.4172/2155-6199.1000432

  23. 23

    S. Yoon, Ph.D. Dissertation (Univ. Michigan, USA, 2010).

  24. 24

    J. D. Semrau, A. A. DiSpirito, W. Gu, and S. Yoon, Appl. Environ. Microbiol. 84, e02289-17 (2018). https://doi.org/10.1128/AEM.02289-17

  25. 25

    D. W. Choi, N. L. Bandow, M. T. McEllistrem, et al., J. Inorg. Biochem. 104, 1240 (2010). https://doi.org/10.1016/j.jinorgbio.2010.08.002

  26. 26

    A. A. L. Hasin, S. J. Gurman, L. M. Murphy, et al., Environ. Sci. Technol. 44, 400 (2010). https://doi.org/10.1021/es901723c

  27. 27

    L. Avdeeva and R. Gvozdev, Chem. J. Mold. 12, 110 (2017). https://doi.org/10.19261/cjm.2017.404

Download references

Funding

The work was performed as a government task, project no. 0089-2014-0006.

Author information

Correspondence to L. V. Avdeeva.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

Additional information

Translated by A.G. Bulaev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avdeeva, L.V., Gvozdev, R.I. Effect of Heavy Metal Salts on Propylene Oxidation by Methanotrophic Bacteria. Russ. J. Phys. Chem. B 13, 1020–1025 (2019). https://doi.org/10.1134/S1990793119060022

Download citation

Keywords:

  • methane
  • propylene
  • methane-oxidizing bacteria
  • heavy metals
  • bioremediation potential