Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 5, pp 727–738 | Cite as

Role of Spectral Line Profile in Laser IR Analysis of Multicomponent Gas Mixtures

  • Sh. Sh. NabievEmail author
  • S. V. Ivanov
  • A. S. Lagutin
  • L. A. Palkina
  • S. V. Malashevich
  • O. A. Ol’khov
  • M. G. Golubkov
STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, AND SPECTROSCOPY

Abstract

Topical issues of the quantitative analysis of multicomponent gas mixtures with use of laser absorption infrared technologies are addressed. It is shown that a number of questions exist regarding the detection of pollutants using these technologies, and these concern not only the position of the center of the analytical line of the detected substance but also the shape of its profile, especially in case of strong intermolecular interactions under conditions of open atmosphere. A number of examples show various aspects of the influence of the error of the spectroscopic model embedded in the solution of the inverse problem (the width and shape of the laser spectral line and gas absorption lines) on the determination of gas concentrations. The parameters of the sensitivity and selectivity of laser gas analysis that support making the optimal choice of laser radiation frequencies for studying specific gas mixtures are discussed. The importance of the high monochromaticity of laser lines, the smooth tuning of the radiation frequency over a wide spectral range, and the adequate simulation of the IR spectra of multicomponent gas mixtures are demonstrated.

Keywords:

quantitative laser analysis multicomponent gas mixture sensitivity selectivity intensity absorption line shape model IR spectra simulation parameters 

Notes

ACKNOWLEDGMENTS

The contribution of S.V. Ivanov in the part of infrared laser gas analyzers and absorption line shapes was supported by the Ministry of Science and Higher Education of the Russian Federation within State Assignment for Federal Research Center Crystallography and Photonics, Russian Academy of Sciences.

FUNDING

This study was carried out within State Assignment of the Ministry of Science and Higher Education of the Russian Federation (topic 0082-2019-0017, registration no. AAAA-A19-119010990034-5).

REFERENCES

  1. 1.
    P. A. Carson and C. J. Mumford, Hazardous Chemicals Handbook (Butterwords, London, 2002).Google Scholar
  2. 2.
    T. M. Bachmann, Hazardous Substances and Human Health (Elsevier, Stuttgart, 2006).Google Scholar
  3. 3.
    A. Pałaszewska-Tkacz, S. Czerczak, and K. Konieczko, Int. J. Occup. Med. Environ. Health 30, 95 (2017).PubMedGoogle Scholar
  4. 4.
    Sh. Sh. Nabiev and Yu. N. Ponomarev, Opt. Atmos. Okeana 11, 1274 (1998).Google Scholar
  5. 5.
    J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed. (Wiley Blackwell, Chichester, 2016).Google Scholar
  6. 6.
    M. Baciak, K. Warmiński, and A. Bęś, Lesné Prace Badawcze 76, 401 (2015).Google Scholar
  7. 7.
    L. H. Weinstein and A. W. Davison, Environ. Pollut. 125, 3 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    A. S. Rozhkov and T. A. Mikhailova, The Effects of Fluorine-Containing Emissions on Conifers (Springer, Berlin, Heidelberg, 1993).CrossRefGoogle Scholar
  9. 9.
    L. Georgeson, M. Maslin, and M. Poessinouw, Geo: Geogr. Environ. 4, e00036 (2017).CrossRefGoogle Scholar
  10. 10.
    Pollution Control Technologies, Ed. by B. Nath and G. Cholakov (EOLSS, Oxford, 2018).Google Scholar
  11. 11.
    Air Quality Monitoring, Assessment and Management, Ed. by N. Mazzeo (IntechOpen, London, 2011).Google Scholar
  12. 12.
    A. A. Aydosov, N. S. Zaurbekov, K. A. Absamatova, et al., Metall. Mining Ind., No. 4, 65 (2016).Google Scholar
  13. 13.
    D. S. Ozerov, A. M. Nosovskii, L. N. Mukhamedieva, et al., Kosm. Tekh. Tekhnol., No. 1 (12), 104 (2016).Google Scholar
  14. 14.
    T. F. Limero and W. T. Wallace, New Space 5 (2), 67 (2017).CrossRefGoogle Scholar
  15. 15.
    Breath Analysis, Ed. by G. Pennazza and M. Santonico (Academic, New York, 2018).Google Scholar
  16. 16.
    O. Lawal, W. M. Ahmed, T. M. E. Nijsen, et al., Metabolomics 13 (10), 110 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    J. Wojtas, Z. Bielecki, T. Stacewicz, et al., Opto-Electron. Rev. 20, 26 (2012).CrossRefGoogle Scholar
  18. 18.
    T. Straume, D. J. Loftus, J. Li, et al., Recent Pat. Space Technol. 3, 13 (2013).CrossRefGoogle Scholar
  19. 19.
    J. K. Schubert and W. Miekisch, in Volatile Biomarkers. Non-Invasive Diagnosis in Physiology and Medicine, Ed. by A. Amann and D. Smith (Elsevier, Amsterdam, 2013), p. 155.Google Scholar
  20. 20.
    T. Straume, D. Loftus, J. Li, et al., Recent Pat. Space Technol. 3, 13 (2013).CrossRefGoogle Scholar
  21. 21.
    B. Buszewski, D. Grzywinski, T. Ligor, et al., Bioanalys 5, 2287 (2013).CrossRefGoogle Scholar
  22. 22.
    Sh. Sh. Nabiev and L. A. Palkina, in The Atmosphere and Ionosphere: Elementary Processes, Monitoring, and Ball Lightning, Physics of Earth and Space Environments, Ed. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, Berlin, 2014), p. 113.Google Scholar
  23. 23.
    G. V. Golubkov, G. Yu. Grigoriev, Sh. Sh. Nabiev, L. A. Palkina, and M. G. Golubkov, Russ. J. Phys. Chem. B 12, 804 (2018).CrossRefGoogle Scholar
  24. 24.
    E. V. Stepanov, Diode Laser Spectroscopy and Analysis of Biomarker Molecules (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  25. 25.
    Sh. Sh. Nabiev, Remote Laser-Optical Methods for Detecting and Identifying Components of Rocket Fuels (Kurchatov. Inst., Moscow, 2010) [in Russian].Google Scholar
  26. 26.
    O. I. Orlov, L. N. Mukhamedieva, G. Yu. Grigor’ev, et al., Aviakosm. Ekol. Med. 52 (7), 182 (2018).Google Scholar
  27. 27.
    Sh. Sh. Nabiev and L. A. Palkina, At. Energy 124, 349 (2018).CrossRefGoogle Scholar
  28. 28.
    B. Tuzson, J. Jagerska, H. Looser, et al., Anal. Chem. 89, 6377 (2017).PubMedCrossRefGoogle Scholar
  29. 29.
    I. Bayrakli, J. Biomed. Opt. 22, 040901 (2017).CrossRefGoogle Scholar
  30. 30.
    J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications (Elsevier Science, Amsterdam, 2008).Google Scholar
  31. 31.
    Sh. Sh. Nabiev, S. V. Ivanov, Ya. Ya. Ponurovskii, and M. A. Sukhanova, KI Preprint No. IAE-6686/12 (Kurchatov. Inst., Moscow, 2011).Google Scholar
  32. 32.
    A. I. Nadezhdinskii, Spectrochim. Acta, Part A 52, 1041 (1996).CrossRefGoogle Scholar
  33. 33.
    Sh. Sh. Nabiev, S. V. Ivanov, and Ya. Ya. Ponurovskii, Atmos. Ocean. Opt. 25, 19 (2012).CrossRefGoogle Scholar
  34. 34.
    K. Esteki, A. Predoi-Cross, C. Povey, et al., J. Quant. Spectrosc. Radiat. Transfer 203, 309 (2017).CrossRefGoogle Scholar
  35. 35.
    S. V. Ivanov, V. M. Semenov, Sh. Sh. Nabiev, and Ya. Ya. Ponurovskii, Appl. Phys. B 117, 423 (2014).CrossRefGoogle Scholar
  36. 36.
    P. Bernath, Spectra of Atoms and Molecules (Oxford Univ. Press, Oxford, 1995).Google Scholar
  37. 37.
    S. G. Rautian and I. I. Sobel’man, Sov. Phys. Usp. 9, 701 (1966).CrossRefGoogle Scholar
  38. 38.
    I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Pergamon, Oxford, 1972; Mir, Moscow, 1977).Google Scholar
  39. 39.
    A. I. Nadezhdinskii, Ya. Ya. Ponurovskii, and M. V. Spiridonov, Quantum Electron. 29, 916 (1999).CrossRefGoogle Scholar
  40. 40.
    Sh. Sh. Nabiev, S. V. Ivanov, and Ya. Ya. Ponurovskii, Atmos. Ocean. Opt. 25, 118 (2012).CrossRefGoogle Scholar
  41. 41.
    S. G. Rautian, Opt. Spectrosc. 90, 30 (2001).CrossRefGoogle Scholar
  42. 42.
    R. Ciurylo, A. S. Pine, and J. Szudy, J. Quant. Spectrosc. Radiat. Transfer 68, 257 (2001).CrossRefGoogle Scholar
  43. 43.
    N. H. Ngo, D. Lisak, H. Tran, and J-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 129, 89 (2013).CrossRefGoogle Scholar
  44. 44.
    N. H. Ngo, D. Lisak, H. Tran, and J-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 134, 105 (2014).CrossRefGoogle Scholar
  45. 45.
    I. Gordon, L. Rothman, C. Hill, et al., J. Quant. Spectrosc. Radiat. Transfer 203, 3 (2017).CrossRefGoogle Scholar
  46. 46.
    R. H. Dicke, Phys. Rev. 89, 472 (1953).CrossRefGoogle Scholar
  47. 47.
    L. Galatry, Phys. Rev. 122, 1218 (1961).CrossRefGoogle Scholar
  48. 48.
    Ya. Ya. Ponurovskii, S. V. Ivanov, Sh. Sh. Nabiev, and V. M. Semenov, Bull. Lebedev Phys. Inst. 41, 22 (2014).CrossRefGoogle Scholar
  49. 49.
    C. Boone, K. A. Walker, and P. F. Bernath, J. Quant. Spectrosc. Radiat. Transfer 105, 525 (2007).CrossRefGoogle Scholar
  50. 50.
    R. P. Berman, J. Quant. Spectrosc. Radiat. Transfer 12, 1331 (1972).CrossRefGoogle Scholar
  51. 51.
    J. Ward, J. Cooper, and E. W. Smith, J. Quant. Spectrosc. Radiat. Transfer 14, 555 (1974).CrossRefGoogle Scholar
  52. 52.
    D. Lisak, D. K. Havey, and J. T. Hodges, Phys. Rev. A 79, 052507 (2009).CrossRefGoogle Scholar
  53. 53.
    R. Ciurylo and J. Szudy, J. Quant. Spectrosc. Radiat. Transfer 57 (1), 41 (1997).CrossRefGoogle Scholar
  54. 54.
    J. Humlicek, J. Quant. Spectrosc. Radiat. Transfer 27, 437 (1982).CrossRefGoogle Scholar
  55. 55.
    M. Kuntz, J. Quant. Spectrosc. Radiat. Transfer 51, 819 (1997).CrossRefGoogle Scholar
  56. 56.
    W. Ruyten, J. Quant. Spectrosc. Radiat. Transfer 86, 231 (2004).CrossRefGoogle Scholar
  57. 57.
    J. Wang, P. Ehlers, I. Silander, et al., J. Opt. Soc. Am. B 29, 2971 (2012).CrossRefGoogle Scholar
  58. 58.
    N. H. Ngo, H. Tran, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 129, 199 (2013).CrossRefGoogle Scholar
  59. 59.
    C. Boone, K. Walker, and P. Bernath, J. Quant. Spectrosc. Radiat. Transfer 112, 980 (2011).CrossRefGoogle Scholar
  60. 60.
    P. W. Rosenkranz, IEEE Trans. Antenn. Propag. 23, 498 (1975).CrossRefGoogle Scholar
  61. 61.
    A. Pereslavtseva and Ya. Ponurovskii, in Proceedings of the 9th International Conference on Tunable Diode Laser Spectroscopy TDLS-2013 (Moscow, 2013), p. 58.Google Scholar
  62. 62.
    A. Nadezhdinskii, A. Pereslavtseva, Ya. Ponurovskii, and V. Semenov, in Proceedings of the 9th International Conference on Tunable Diode Laser Spectroscopy TDLS-2013 (Moscow, 2013), p. 56.Google Scholar
  63. 63.
    Sh. Sh. Nabiev, S. V. Ivanov, Ya. Ya. Ponurovskii, and V. M. Semenov, Perspekt. Mater., No. 14, 134 (2013).Google Scholar
  64. 64.
    Ya. Ya. Ponurovskii, Cand. Sci. (Phys. Math.) Dissertation (Center Nat. Sci. Res., Prokhorov Inst. Gen. Phys. RAS, Moscow, 2000).Google Scholar
  65. 65.
    J.-P. Hermier, A. Bramati, A. Khoury, et al., J. Opt. Soc. Am. B 16, 2140 (1999).CrossRefGoogle Scholar
  66. 66.
    F. K. Tittel and R. Lewicki, in Semiconductor Lasers: Fundamentals and Applications, Ed. by A. Baranov and E. Tourni (Woodhead, Cambridge, 2013), p. 579.Google Scholar
  67. 67.
    S. Bartalini, S. Borri, P. Cancio, et al., Phys. Rev. Lett. 104, 083904 (2010).PubMedCrossRefGoogle Scholar
  68. 68.
    S. V. Ivanov, V. I. Novoderezhkin, V. Ya. Panchenko, et al., Opt. Eng. 33, 3202 (1994).CrossRefGoogle Scholar
  69. 69.
    Yu. S. Makushkin, A. A. Mitsel’, and G. S. Khmel’nitskii, Zh. Prikl. Spektrosk. 35, 785 (1981).Google Scholar
  70. 70.
    S. D. Frans and J. M. Harris, Anal. Chem. 57, 2680 (1985).CrossRefGoogle Scholar
  71. 71.
    E. V. Stepanov, Opt. Atmos. Okeana 15, 838 (2002).Google Scholar
  72. 72.
    P. L. Meyer and M. W. Sigrist, Rev. Sci. Instrum. 61, 1779 (1990).CrossRefGoogle Scholar
  73. 73.
    G. Bergmann, B. von Oepen, and P. Zinn, Anal. Chem. 59, 2522 (1987).CrossRefGoogle Scholar
  74. 74.
    H. Kaiser, Fresenius Z. Anal. Chem. 260, 252 (1972).CrossRefGoogle Scholar
  75. 75.
    A. Junker and G. Bergmann, Fresenius Z. Anal. Chem. 272, 267 (1974).CrossRefGoogle Scholar
  76. 76.
    E. V. Stepanov, in Laser Spectral Analysis of Biomarker Molecules for Biomedical Diagnostics, Tr. IOFAN, Ed. by E. V. Stepanov (Nauka, Moscow, 2005), p. 107 [in Russian].Google Scholar
  77. 77.
    S. A. Trushin, Phys. Chem. Chem. Phys. 96, 319 (1992).Google Scholar
  78. 78.
    Gas Lasers, Ed. by M. Endo and R. F. Walter (CRC, New York, 2006).Google Scholar
  79. 79.
    G. Guelachvili, D. Villeneuve, R. Farrenq, et al., J. Mol. Spectrosc. 98, 64 (1983).CrossRefGoogle Scholar
  80. 80.
    A. Ionin, A. Kurnosov, A. Napartovich, and L. Seleznev, Laser Phys. 20, 144 (2010).CrossRefGoogle Scholar
  81. 81.
    U. K. Sengupta, P. K. Das, and K. N. Rao, J. Mol. Spectrosc. 74, 322 (1979).CrossRefGoogle Scholar
  82. 82.
    V. V. Apollonov, High-Conductivity Channels in Space (Springer, Cham, Switzerland, 2018).CrossRefGoogle Scholar
  83. 83.
    A. Ionin, D. Sinitsyn, and A. Suchkov, Proc. SPIE 2206, 287 (1994).CrossRefGoogle Scholar
  84. 84.
    C. Rolland, J. Reid, and B. K. Garside, Appl. Phys. Lett. 44, 380 (1984).CrossRefGoogle Scholar
  85. 85.
    A. Chakrabarti and J. Reid, Rev. Sci. Instrum. 58, 1413 (1987).CrossRefGoogle Scholar
  86. 86.
    P. de Bievre, M. Gallet, N. Holden, and I. Barnes, Phys. Chem. Ref. Data 13, 809 (1984).CrossRefGoogle Scholar
  87. 87.
    F. X. Kneizys, E. P. Shettle, L. W. Abreu, et al., User’s Guide on LOWTRAN-7, AFGL-TR-88-0177, Environmental Research Paper, No. 1010 (1988).Google Scholar
  88. 88.
    F. Thibault, V. Menoux, R. LeDoucen, et al., Appl. Opt. 36, 563 (1997).PubMedCrossRefGoogle Scholar
  89. 89.
    O. Buzykin, A. Ionin, S. Ivanov, et al., Laser Part. Beams 18, 697 (2001).CrossRefGoogle Scholar
  90. 90.
    S. V. Ivanov, A. A. Moimi, A. A. Kotkov, et al., Khim. Fiz. 23 (8), 58 (2004).Google Scholar
  91. 91.
    S. V. Ivanov, V. Ya. Panchenko, and T. B. Razumikhina, Opt. Atmos. Okeana 6, 1023 (1993).Google Scholar
  92. 92.
    L. S. Rothman, Appl. Opt. 20, 791 (1981).PubMedCrossRefGoogle Scholar
  93. 93.
    L. S. Rothman, A. Goldman, J. R. Gillis, et al., Appl. Opt. 20, 1323 (1981).PubMedCrossRefGoogle Scholar
  94. 94.
    L. S. Rothman, R. R. Gamache, and A. Goldman, Appl. Opt. 26 (19), 40 (1987).CrossRefGoogle Scholar
  95. 95.
    S. V. Ivanov, J. Quant. Spectrosc. Radiat. Transfer 177, 269 (2016).CrossRefGoogle Scholar
  96. 96.
    A. I. Parkhomenko and A. M. Shalagin, J. Exp. Theor. Phys. 93, 723 (2001).CrossRefGoogle Scholar
  97. 97.
    R. M. Herman, Int. J. Spectrosc. 2010, 306392 (2010).CrossRefGoogle Scholar
  98. 98.
    V. I. Kozintsev, G. Iden, M. L. Belov, et al., Vestn. MGTU Baumana, Ser. Priborostr., No. 4, 3 (2009).Google Scholar
  99. 99.
    L. N. Eremenko, M. L. Belov, A. Yu. Busargin, and V. A. Gorodnichev, Modern Problems of Optical Technology, Ed. by N. V. Baryshnikov (MGTU im. N. E. Baumana, Moscow, 2013), p. 207 [in Russian].Google Scholar
  100. 100.
    G. V. Golubkov, G. K. Ivanov, and M. G. Golubkov, Khim. Fiz. 24 (6), 3 (2005).Google Scholar
  101. 101.
    G. V. Golubkov, M. I. Manzhelii, and I. V. Karpov, Russ. J. Phys. Chem. B 5, 406 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Sh. Sh. Nabiev
    • 1
    Email author
  • S. V. Ivanov
    • 2
  • A. S. Lagutin
    • 1
  • L. A. Palkina
    • 1
  • S. V. Malashevich
    • 3
  • O. A. Ol’khov
    • 4
  • M. G. Golubkov
    • 4
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Federal Research Center Crystallography and Photonics, Russian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyMoscowRussia
  4. 4.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations