Russian Journal of Physical Chemistry B

, Volume 13, Issue 5, pp 861–866 | Cite as

Angular and Energy Distributions of K+ and I Ions in Dissociation of KI Molecules at a Diamond Surface

  • V. M. Azriel’
  • V. M. Akimov
  • L. Yu. RusinEmail author
  • M. B. Sevryuk


Scattering of K+ and I ions in surface-induced dissociation of KI molecules at a diamond (110) target has been studied using the molecular beam techniques. The angular and energy distributions of the positive and negative ions were measured by a time-of-flight detector with a retarding field energy analyzer. The incident KI beam energy was equal to 12 eV while the target surface temperature was 250°C. The angular distributions of the K+ ions we observed exhibited maxima at scattering angles smaller than the specular reflection ones, in contrast to the I ion distributions where the maxima were shifted to larger angles. The intensities of scattering of both the ions at the maxima of the distributions increased as the incident angles of the beam grew. The energy distributions of the positive and negative ions have turned out to be identical which may indicate the mechanism of rapid non-statistical dissociation of the molecules upon an impact on the target surface.


dissociation of molecules surface diamond potassium iodide ion distributions 



The authors are grateful to D.B. Kabanov and L.I. Kolesnikova for their help in work. This work was carried out within the framework of the Program of fundamental scientific research of the state academies of sciences for 2013–2020, the theme being “Fundamental physicochemical processes of the impact of energy objects on the environment and living systems.”


The article was translated by the authors.


  1. 1.
    R. G. Cooks, D. T. Terwilliger, T. Ast, J. H. Beynon, and T. Keough, J. Am. Chem. Soc. 97, 1583 (1975).CrossRefGoogle Scholar
  2. 2.
    E. Kolodney and A. Amirav, J. Chem. Phys. 79, 4648 (1983).CrossRefGoogle Scholar
  3. 3.
    E. Kolodney, A. Amirav, R. Elber, and R. B. Gerber, Chem. Phys. Lett. 111, 366 (1984).CrossRefGoogle Scholar
  4. 4.
    V. M. Azriel’, V. M. Akimov, L. I. Kolesnikova, et al., Nauka, Tekh. Obrazov., No. 3 (44), 13 (2018).Google Scholar
  5. 5.
    J. J. Ewing, R. Milstein, and R. S. Berry, J. Chem. Phys. 54, 1752 (1971).CrossRefGoogle Scholar
  6. 6.
    R. M. Logan and R. E. Stickney, J. Chem. Phys. 44, 195 (1966).CrossRefGoogle Scholar
  7. 7.
    A. W. Kleyn, in Handbook of Surface Science, Ed. by E. Hasselbrink and B. I. Lundqvist (Elsevier Science, Amsterdam, 2008), Vol. 3, Chap. 2, p. 29.Google Scholar
  8. 8.
    V. M. Azriel’, V. M. Akimov, and L. Yu. Rusin, Chem. Phys. Rep. 15, 311 (1996).Google Scholar
  9. 9.
    A. Danon and A. Amirav, J. Phys. Chem. 93, 5549 (1989).CrossRefGoogle Scholar
  10. 10.
    J. A. Burroughs, S. B. Wainhaus, and L. Hanley, J. Chem. Phys. 103, 6706 (1995).CrossRefGoogle Scholar
  11. 11.
    S. O. Meroueh, Y. Wang, and W. L. Hase, J. Phys. Chem. A 106, 9983 (2002).CrossRefGoogle Scholar
  12. 12.
    V. N. Kondrat’ev and E. E. Nikitin, Gas-Phase Reactions: Kinetics and Mechanisms (Nauka, Moscow, 1974; Springer, Berlin, 1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. M. Azriel’
    • 1
  • V. M. Akimov
    • 1
  • L. Yu. Rusin
    • 1
    Email author
  • M. B. Sevryuk
    • 1
  1. 1.Tal’roze Institute for Energy Problems of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations