New Cocatalyst for Alkene Polymerization Reactions with Transition Metal Catalysts
- 8 Downloads
Abstract
The effect of a cocatalyst in alkene homo- and copolymerizations with transition metal catalysts of different types was studied. The results of studies of polymerizations of ethylene, propylene, and higher linear 1-alkenes and copolymerizations of ethylene with linear 1-alkenes using catalysts of different types in combination with a binary cocatalyst Al(C2H5)2Cl/Mg(C4H9)2 at [Al] : [Mg] > 2.5 were summarized. The traditional Ziegler–Natta catalysts (TiCl4, Ti(Oi-C3H7)4, and TiCl3 ) and titanium postmetallocene complexes with various organic ligands were studied. The binary cocatalyst significantly increased the activity of the traditional catalysts compared with that of Al(C2H5)2Cl and the activity of postmetallocene complexes compared with that of polymethylaluminoxane (MAO). The active centers of these catalytic systems differ in their kinetic parameters, stereospecificity, and copolymerization ability. The efficiency of the Al(C3H5)2Cl/Mg(C4H9)2 cocatalyst can be explained by the in situ formation of finely dispersed MgCl2 and immobilization of the cationic active centers on its surface.
Keywords:
alkene polymerization transition metal catalysts kinetics molecular mass distribution gel permeation chromatography IR and NMR spectroscopy differential scanning calorimetry X-ray diffraction analysisNotes
FUNDING
This study was performed under state assignment and supported by the Russian Scientific Foundation (project no. 18-13-00375).
REFERENCES
- 1.Y. V. Kissin, R. I. Mink, A. J. Brandolini, and T. E. Nowlin, J. Polym. Sci., Part A 47, 3271 (2009).CrossRefGoogle Scholar
- 2.L. A. Rishina, N. M. Galashina, S. C. Gagieva, et al., Eur. Polym. J. 49, 147 (2013).CrossRefGoogle Scholar
- 3.L. Rishina, S. S. Lalayan, S. C. Gagieva, et al., Polymer 54, 6526 (2013).CrossRefGoogle Scholar
- 4.L. A. Rishina, Y. V. Kissin, S. S. Lalayan, et al., J. Polym. Sci., Part A 55, 1844 (2017).CrossRefGoogle Scholar
- 5.L. A. Rishina, N. M. Galashina, S. Ch. Gagieva, V. A. Tuskaev, B. M. Bulychev, and Yu. N. Belokon’, Polymer Sci., Ser. A 50, 110 (2008).Google Scholar
- 6.Y. V. Kissin, J. Polym. Sci., Part A 33, 227 (1995).CrossRefGoogle Scholar
- 7.Y. V. Kissin, Alkene Polymerization Reactions with Transition Metal Catalysts (Elsevier, Amsterdam, 2008), Chap. 2.Google Scholar
- 8.T. Hayashi, Y. Inoue, R. Chujo, and T. Asakura, Polymer 29, 138 (1988).CrossRefGoogle Scholar
- 9.E. T. Hsieh and J. C. Randall, Macromolecules 15, 1402 (1982).CrossRefGoogle Scholar
- 10.F. S. Schilling and A. E. Tonelli, Macromolecules 13, 270 (1990).CrossRefGoogle Scholar
- 11.V. Busico, R. Cipullo, G. Monaco, et al., Macromolecules 30, 6251 (1997).CrossRefGoogle Scholar
- 12.V. Busico, R. Cipullo, G. Monaco, et al., Macromolecules 32, 4173 (1999).CrossRefGoogle Scholar
- 13.T. E. Nowlin, Y. V. Kissin, and K. P. Wagner, J. Polym. Sci., Part A 26, 755 (1988).CrossRefGoogle Scholar
- 14.Y. V. Kissin, V. I. Tsvetkova, and N. M. Chirkov, Eur. Polym. J. 8, 529 (1972).CrossRefGoogle Scholar
- 15.Y. V. Kissin and L. A. Rishina, Eur. Polym. J. 12, 757 (1976).CrossRefGoogle Scholar
- 16.T. E. Nowlin, R. I. Mink, and A. J. Brandolini, J. Polym. Sci., Part A 37, 4255 (1999).CrossRefGoogle Scholar
- 17.M. P. McDaniel, E. D. Schwerdtfeger, and M. D. Jensen, J. Catal. 314, 109 (2014).CrossRefGoogle Scholar
- 18.Y. V. Kissin, J. Polym. Sci., Part B 49, 195 (2011).CrossRefGoogle Scholar
- 19.B. A. Krentsel, Y. V. Kissin, V. I. Kleiner, and L. L. Stotskaya, Polymers and Copolymers of Higher α-Olefins (Hanser, New York, 1997), Chap. 8.Google Scholar
- 20.Y. V. Kissin and D. L. Beach, J. Polym. Sci., Part A 22, 333 (1984).Google Scholar
- 21.N. M. Chirkov, P. E. Matkovskii, and F. S. D’yachkovskii, Polymerization Induced by Complex Metalloorganic Catalysts (Khimiya, Moscow, 1976) [in Russian].Google Scholar
- 22.L. A. Rishina, S. S. Lalayan, S. Ch. Gagieva, et al., J. Res. Updates Polym. Sci. 3, 216 (2014).CrossRefGoogle Scholar
- 23.L. Rodriguez, Tetrahedron Lett. 17, 7 (1959).CrossRefGoogle Scholar
- 24.F. X. Werber, C. J. Benning, W. R. Wszolek, et al., J. Polym. Sci., Part A 6, 743 (1968).Google Scholar
- 25.K. Ziegler, H. Martin, and I. Stedefeder, Tetrahedron Lett. 20, 15 (1959).Google Scholar
- 26.C. G. Overberger, F. Ang, and H. Mark, J. Polym. Sci. 35, 381 (1959).CrossRefGoogle Scholar
- 27.L. A. Rishina, E. N. Zhuravleva, Yu. V. Kissin, et al., Vysokomol. Soedin., Ser. A 16, 1459 (1974).Google Scholar
- 28.J. Varadi, I. Czajlik, A. Baan, et al., J. Polym. Sci., Part C 16, 2069 (1967).Google Scholar
- 29.I. Czajlik, J. Varadi, and A. Baan, J. Polym. Sci., Part B 4, 661 (1966).Google Scholar
- 30.G. Natta, L. Porri, A. Carbonaro, et al., Macromol. Chem. 77, 126 (1964).CrossRefGoogle Scholar
- 31.D. H. Dawes and C. A. Winkler, J. Polym. Sci., Part A 2, 3029 (1964).Google Scholar
- 32.T. C. Dzhabiev, F. S. D’yachkovskii, and A. E. Shilov, Vysokomol. Soedin., Ser. A 13, 2474 (1971).Google Scholar
- 33.I. Ono and T. Keii, J. Polym. Sci., Part A 4, 2441 (1966).Google Scholar