Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 5, pp 789–802 | Cite as

New Cocatalyst for Alkene Polymerization Reactions with Transition Metal Catalysts

  • L. A. RishinaEmail author
  • Y. V. Kissin
  • S. Ch. Gagieva
  • S. S. Lalayan
CHEMICAL PHYSICS OF POLYMER MATERIALS
  • 8 Downloads

Abstract

The effect of a cocatalyst in alkene homo- and copolymerizations with transition metal catalysts of different types was studied. The results of studies of polymerizations of ethylene, propylene, and higher linear 1-alkenes and copolymerizations of ethylene with linear 1-alkenes using catalysts of different types in combination with a binary cocatalyst Al(C2H5)2Cl/Mg(C4H9)2 at [Al] : [Mg] > 2.5 were summarized. The traditional Ziegler–Natta catalysts (TiCl4, Ti(Oi-C3H7)4, and TiCl3 ) and titanium postmetallocene complexes with various organic ligands were studied. The binary cocatalyst significantly increased the activity of the traditional catalysts compared with that of Al(C2H5)2Cl and the activity of postmetallocene complexes compared with that of polymethylaluminoxane (MAO). The active centers of these catalytic systems differ in their kinetic parameters, stereospecificity, and copolymerization ability. The efficiency of the Al(C3H5)2Cl/Mg(C4H9)2 cocatalyst can be explained by the in situ formation of finely dispersed MgCl2 and immobilization of the cationic active centers on its surface.

Keywords:

alkene polymerization transition metal catalysts kinetics molecular mass distribution gel permeation chromatography IR and NMR spectroscopy differential scanning calorimetry X-ray diffraction analysis 

Notes

FUNDING

This study was performed under state assignment and supported by the Russian Scientific Foundation (project no. 18-13-00375).

REFERENCES

  1. 1.
    Y. V. Kissin, R. I. Mink, A. J. Brandolini, and T. E. Nowlin, J. Polym. Sci., Part A 47, 3271 (2009).CrossRefGoogle Scholar
  2. 2.
    L. A. Rishina, N. M. Galashina, S. C. Gagieva, et al., Eur. Polym. J. 49, 147 (2013).CrossRefGoogle Scholar
  3. 3.
    L. Rishina, S. S. Lalayan, S. C. Gagieva, et al., Polymer 54, 6526 (2013).CrossRefGoogle Scholar
  4. 4.
    L. A. Rishina, Y. V. Kissin, S. S. Lalayan, et al., J. Polym. Sci., Part A 55, 1844 (2017).CrossRefGoogle Scholar
  5. 5.
    L. A. Rishina, N. M. Galashina, S. Ch. Gagieva, V. A. Tuskaev, B. M. Bulychev, and Yu. N. Belokon’, Polymer Sci., Ser. A 50, 110 (2008).Google Scholar
  6. 6.
    Y. V. Kissin, J. Polym. Sci., Part A 33, 227 (1995).CrossRefGoogle Scholar
  7. 7.
    Y. V. Kissin, Alkene Polymerization Reactions with Transition Metal Catalysts (Elsevier, Amsterdam, 2008), Chap. 2.Google Scholar
  8. 8.
    T. Hayashi, Y. Inoue, R. Chujo, and T. Asakura, Polymer 29, 138 (1988).CrossRefGoogle Scholar
  9. 9.
    E. T. Hsieh and J. C. Randall, Macromolecules 15, 1402 (1982).CrossRefGoogle Scholar
  10. 10.
    F. S. Schilling and A. E. Tonelli, Macromolecules 13, 270 (1990).CrossRefGoogle Scholar
  11. 11.
    V. Busico, R. Cipullo, G. Monaco, et al., Macromolecules 30, 6251 (1997).CrossRefGoogle Scholar
  12. 12.
    V. Busico, R. Cipullo, G. Monaco, et al., Macromolecules 32, 4173 (1999).CrossRefGoogle Scholar
  13. 13.
    T. E. Nowlin, Y. V. Kissin, and K. P. Wagner, J. Polym. Sci., Part A 26, 755 (1988).CrossRefGoogle Scholar
  14. 14.
    Y. V. Kissin, V. I. Tsvetkova, and N. M. Chirkov, Eur. Polym. J. 8, 529 (1972).CrossRefGoogle Scholar
  15. 15.
    Y. V. Kissin and L. A. Rishina, Eur. Polym. J. 12, 757 (1976).CrossRefGoogle Scholar
  16. 16.
    T. E. Nowlin, R. I. Mink, and A. J. Brandolini, J. Polym. Sci., Part A 37, 4255 (1999).CrossRefGoogle Scholar
  17. 17.
    M. P. McDaniel, E. D. Schwerdtfeger, and M. D. Jensen, J. Catal. 314, 109 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. V. Kissin, J. Polym. Sci., Part B 49, 195 (2011).CrossRefGoogle Scholar
  19. 19.
    B. A. Krentsel, Y. V. Kissin, V. I. Kleiner, and L. L. Stotskaya, Polymers and Copolymers of Higher α-Olefins (Hanser, New York, 1997), Chap. 8.Google Scholar
  20. 20.
    Y. V. Kissin and D. L. Beach, J. Polym. Sci., Part A 22, 333 (1984).Google Scholar
  21. 21.
    N. M. Chirkov, P. E. Matkovskii, and F. S. D’yachkovskii, Polymerization Induced by Complex Metalloorganic Catalysts (Khimiya, Moscow, 1976) [in Russian].Google Scholar
  22. 22.
    L. A. Rishina, S. S. Lalayan, S. Ch. Gagieva, et al., J. Res. Updates Polym. Sci. 3, 216 (2014).CrossRefGoogle Scholar
  23. 23.
    L. Rodriguez, Tetrahedron Lett. 17, 7 (1959).CrossRefGoogle Scholar
  24. 24.
    F. X. Werber, C. J. Benning, W. R. Wszolek, et al., J. Polym. Sci., Part A 6, 743 (1968).Google Scholar
  25. 25.
    K. Ziegler, H. Martin, and I. Stedefeder, Tetrahedron Lett. 20, 15 (1959).Google Scholar
  26. 26.
    C. G. Overberger, F. Ang, and H. Mark, J. Polym. Sci. 35, 381 (1959).CrossRefGoogle Scholar
  27. 27.
    L. A. Rishina, E. N. Zhuravleva, Yu. V. Kissin, et al., Vysokomol. Soedin., Ser. A 16, 1459 (1974).Google Scholar
  28. 28.
    J. Varadi, I. Czajlik, A. Baan, et al., J. Polym. Sci., Part C 16, 2069 (1967).Google Scholar
  29. 29.
    I. Czajlik, J. Varadi, and A. Baan, J. Polym. Sci., Part B 4, 661 (1966).Google Scholar
  30. 30.
    G. Natta, L. Porri, A. Carbonaro, et al., Macromol. Chem. 77, 126 (1964).CrossRefGoogle Scholar
  31. 31.
    D. H. Dawes and C. A. Winkler, J. Polym. Sci., Part A 2, 3029 (1964).Google Scholar
  32. 32.
    T. C. Dzhabiev, F. S. D’yachkovskii, and A. E. Shilov, Vysokomol. Soedin., Ser. A 13, 2474 (1971).Google Scholar
  33. 33.
    I. Ono and T. Keii, J. Polym. Sci., Part A 4, 2441 (1966).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. A. Rishina
    • 1
    Email author
  • Y. V. Kissin
    • 2
  • S. Ch. Gagieva
    • 3
  • S. S. Lalayan
    • 1
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Rutgers, The State University of New Jersey, Department of Chemistry and Chemical BiologyNJUSA
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations