Russian Journal of Physical Chemistry B

, Volume 13, Issue 5, pp 819–824 | Cite as

Problems of Controlling the Rheological Behavior of Thermoplastic Vulcanizates

  • E. V. PrutEmail author
  • T. I. Medintseva
  • O. P. Kuznetsova


Problems of the rheological behavior of thermoplastic vulcanizates prepared by dynamic vulcanization in the basis of polypropylene and the ternary ethylene–propylene–diene elastomer are considered. It has been shown that the nature of a vulcanizing system and the molecular structure of polypropylene are the most important factors influencing the rheological behavior of the studied materials. The use of an oil-extended elastomer enables the creation of processable blends containing up to 70 wt % of the rubber phase. The partial replacement of the elastomer by rubber powder leads to a decrease in the viscosity of the materials containing up to 50 wt % of the elastomer even without a plasticizer.


polypropylene ethylene–propylene–diene elastomer dynamic vulcanization rheological properties 



This work was performed within the state contract (state registration no. AAAA-A17-117040610309-0).


  1. 1.
    E. V. Prut and T. I. Medintseva, Vse Mater., No. 9, 34 (2010).Google Scholar
  2. 2.
    E. V. Prut and A. N. Zelenetskii, Russ. Chem. Rev. 70, 65 (2001).CrossRefGoogle Scholar
  3. 3.
    S. Abdou-Sabet and S. Datta, in Polymer Blends, Ed. by D. R. Paul and C. B. Bucknall (Wiley, New York, 2000).Google Scholar
  4. 4.
    O. Chung, A. Y. Coran, and J. L. White, SPE ANTEC 43, 3455 (1997).Google Scholar
  5. 5.
    T. I. Medintseva, V. E. Dreval’, N. A. Erina, and E. V. Prut, Polymer Sci., Ser. A 45, 1213 (2003).Google Scholar
  6. 6.
    L. A. Rishina, Y. V. Kissin, S. S. Lalayan, V. G. Krasheninnikov, E. O. Perepelitsina, and T. I. Medintseva, Polymer Sci., Ser. B 58, 152 (2016).CrossRefGoogle Scholar
  7. 7.
    E. V. Prut, P. M. Nedorezova, A. N. Klyamkina, T. I. Medintseva, L. A. Zhorina, O. P. Kuznetsova, A. V. Chapurina, and A. M. Aladyshev, Polymer Sci., Ser. A 55, 177 (2013).CrossRefGoogle Scholar
  8. 8.
    O. P. Kuznetsova, A. Yu. Vasilenko, and E. V. Prut, Vse Mater., Entsikl. Sprav., No. 12, 41 (2018).Google Scholar
  9. 9.
    E. Prut, T. Medintseva, D. Solomatin, and O. Kuznetsova, Macromol. Symp. 321–322, 59 (2012).CrossRefGoogle Scholar
  10. 10.
    B. A. Dogadkin, A. A. Dontsov, and V. A. Shershnev, Elastomer Chemistry (Khimiya, Moscow, 1981) [in Russian].Google Scholar
  11. 11.
    L. A. Zhorina, L. V. Kompaniets, A. A. Kanauzova, and E. V. Prut, Polymer Sci., Ser. A 45, 606 (2003).Google Scholar
  12. 12.
    T. I. Medintseva, N. A. Erina, and E. V. Prut, Polymer Sci., Ser. A 50, 647 (2008).CrossRefGoogle Scholar
  13. 13.
    R. P. Lattimer, R. A. Kinsey, and R. W. Layer, Rubber Chem. Technol. 62, 107 (1989).CrossRefGoogle Scholar
  14. 14.
    E. V. Prut, N. A. Erina, J. Karger-Kocsis, et al., J. Appl. Polym. Sci. 109, 1212 (2008).CrossRefGoogle Scholar
  15. 15.
    E. V. Prut, T. I. Medintseva, O. V. Kochanova, et al., J. Thermoplast. Comp. Mater. 28, 1202 (2015).CrossRefGoogle Scholar
  16. 16.
    E. V. Prut and T. I. Medintseva, Gummi Fasern Kunststoffe 64, 434 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Prut
    • 1
    Email author
  • T. I. Medintseva
    • 1
  • O. P. Kuznetsova
    • 1
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations