Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 421–426 | Cite as

Microwave-Assisted Lignin Conversion for Energy Carriers

  • P. A. ZharovaEmail author
  • A. V. Chistyakov
  • S. V. Lesin
  • G. I. Konstantinov
  • O. V. Arapova
  • M. V. Tsodikov


This study has shown that the deposition of iron salts (iron acetylacetonate) in extremely low concentrations (0.1 wt %) on lignin leads to an abrupt increase in the ability of lignin to absorb 1 kW microwave radiation and lignin conversion to a hydrogen-containing gas with a hydrogen recovery of up to 90% in terms of hydrogen contained in lignin. It has been found that the deposition of metals (Fe and Ni) on lignin makes it possible to directionally change the selectivity of the lignin degradation process under the action of microwave radiation; therefore, this process can be classified as a plasma catalytic degradation. The results can be used to minimize the amount of the catalyst and propose an efficient method to produce hydrogen from lignin waste.


lignin iron nickel microwave radiation hydrogen catalysis 



This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project part of the state task; grant agreement no. 14.613.21.0073 of October 23, 2017; unique identifier RFMEFI61317X0073).


  1. 1.
    R. M. Rowell, R. Pettersen, J. S. Han, et al., in Handbook of Wood Chemistry and Wood Composites (CRC, Boca Raton, FL, 2005), p. 9.Google Scholar
  2. 2.
    W.-J. Liu, H. Jiang, and H.-Q. Yu, Green Chem. 17, 4888 (2015).CrossRefGoogle Scholar
  3. 3.
    M. L. Rabinovich, in Proceedings of the 2nd Nordic Wood Biorefinery Conference (Finland, Helsinki, 2009), p. 111.Google Scholar
  4. 4.
    T. Q. Hu, Chemical Modification, Properties, and Usage of Lignin (Springer, New York, 2002).CrossRefGoogle Scholar
  5. 5.
    M. V. Tsodikov, M. A. Perederii, M. S. Karaseva, et al., Nanotechnol.Russ. 1, 161 (2007).Google Scholar
  6. 6.
    A. J. Buttress, E. P. Binner, C. Y. Palade, et al., Chem. Eng. J. 283, 215 (2016).CrossRefGoogle Scholar
  7. 7.
    J. Robinson, C. Dodds, A. Stavrinides, et al., Energy Fuels 29, 1701 (2015).CrossRefGoogle Scholar
  8. 8.
    Q. Bu, H. Lei, L. Wang, et al., Bioresour. Technol. 162, 142 (2014).CrossRefGoogle Scholar
  9. 9.
    L. Fan, P. Chen, Y. Zhang, et al., Bioresour. Technol. 225, 199 (2017).CrossRefGoogle Scholar
  10. 10.
    S. Liu, Q. Xie, B. Zhang, et al., Bioresour. Technol. 204, 164 (2016).CrossRefGoogle Scholar
  11. 11.
    W. Yunpu, D. Leilei, F. Liangliang, et al., J. Anal. Appl. Pyrolys. 119, 104 (2016).CrossRefGoogle Scholar
  12. 12.
    F. Mushtaq, R. Mat, and F. N. Ani, Renew. Sust. Energ. Rev. 39, 555 (2014).CrossRefGoogle Scholar
  13. 13.
    F. X. Collard and J. Blin, Renew. Sust. Energ. Rev. 38, 594 (2014).CrossRefGoogle Scholar
  14. 14.
    O. V. Arapova, G. N. Bondarenko, A. V. Chistyakov, and M. V. Tsodikov, Russ. J. Phys. Chem. A 91, 1717 (2017).CrossRefGoogle Scholar
  15. 15.
    M. V. Tsodikov, M. A. Perederii, A. V. Chistyakov, G. I. Konstantinov, Kh. M. Kadiev, and S. N. Khadzhiev, Solid Fuel Chem. 46, 121 (2012).CrossRefGoogle Scholar
  16. 16.
    M. V. Tsodikov, M. A. Perederii, M. S. Karaseva, et al., Naukoemk. Tekhnol. 8 (4), 58 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. A. Zharova
    • 1
    Email author
  • A. V. Chistyakov
    • 1
    • 2
  • S. V. Lesin
    • 2
  • G. I. Konstantinov
    • 1
  • O. V. Arapova
    • 1
  • M. V. Tsodikov
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Gubkin State University of Oil and GasMoscowRussia

Personalised recommendations