Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 427–437 | Cite as

Effect of Adsorption on the Energy Characteristics of a Rough Solid

  • Yu. K. TovbinEmail author
  • E. S. Zaitseva
  • E. E. Gvozdeva
Article
  • 3 Downloads

Abstract

The work analyzes the energy characteristics of rough interfaces with and without taking into account adsorption. For simplicity, the theory of the lattice gas model is exemplified by taking into account a lateral interaction between the nearest components of the system. The behavior of the surface free and internal energies of the interface between the rough solid and the adsorbed gas is considered. The effect of the non-equilibrium states of interfaces on the energy characteristics of the surface are analyzed depending on the formation temperature of a flat rough surface. The difference between the excess surface energy at the solid–mobile phase interface and the non-equilibrium analogue of the surface tension of the same system, which transforms into the surface tension in the complete equilibrium state, is discussed. The effect of adsorption on the energy characteristics of the flat rough surface and the position of the equimolar surface is explored, depending on the gas pressure during physical adsorption and chemisorption. The means of calculating the fluctuation estimates of the formation probability of a rough solid boundary from the metastable state with a flat boundary is formulated. The size dependences of the formation probability of a circular region with a rough solid boundary on its curvature radius are obtained.

Keywords:

adsorption rough surface excess free energy excess surface energy lattice gas model quasichemical approximation fluctuations 

Notes

FUNDING

The work was supported by the Russian Foundation for Basic Research (project code 18-03-00030a).

REFERENCES

  1. 1.
    S. Z. Roginskii, Adsorption and Catalysis on Nonuniform Surfaces (Akad. Nauk. SSSR, Moscow, 1948) [in Russian].Google Scholar
  2. 2.
    B. M. W. Trapnell, Chemisorbtion (Butterworths, Lodnon, 1964; Inostr. Liter., Moscow, 1958).Google Scholar
  3. 3.
    S. L. Kiperman, Introduction to the Kinetics of Heterogeneous Catalytic Reactions (Nauka, Moscow, 1964) [in Russian].Google Scholar
  4. 4.
    F. F. Vol"kenshtein, Physicochemistry of Semiconductor Surfaces (Nauka, Moscow, 1973) [in Russian].Google Scholar
  5. 5.
    B. Delmon, Introduction à la cinétique hétérogène (TECHNIP, 1969; Mir, Moscow, 1972) [in French].Google Scholar
  6. 6.
    A. Ya. Rozovskii, Heterogeneous Chemical Reactions (Nauka, Moscow, 1980).Google Scholar
  7. 7.
    P. Barre, Kinetics of Heterogeneous Processes (Gauthier-Villars, Paris, 1973; Mir, Moscow, 1976).Google Scholar
  8. 8.
    V. F. Kiselev and O. V. Krylov, Adsorption Processes on the Semiconductor and Dielectric Surfaces (Nauka, Moscow, 1978) [in Russian].Google Scholar
  9. 9.
    S. R. Morrison, The Chemical Physics of Surfaces (Mir, Moscow, 1980; Plenum, New York, 1977).Google Scholar
  10. 10.
    M. W. Roberts and C. S. McKee, Chemistry of the Metal-Gas Interface (Clarendon, Oxford, 1978).Google Scholar
  11. 11.
    G. A. Somorjai, Chemistry in Two-Dimension Surface (Cornell Univ. Press, New York, Ithaca, 1981).Google Scholar
  12. 12.
    O. V. Krylov and B. R. Shub, Nonequilibrium Processes in Catalysis (Khimiya, Moscow, 1990) [in Russian].Google Scholar
  13. 13.
    R. Lodiz and R. Parker, The Growth of Single Crystals (Prentice-Hall, Englewood Cliffs, New York, 1987).Google Scholar
  14. 14.
    G. S. Benson and K. S. Yun, in The Solid-Gas Interface, Ed. by E. A. Flood (Marcel Dekker, New York, 1967), Vol. 1, p. 203.Google Scholar
  15. 15.
    A. W. Adamson and A. P. Gast, Physical Chemistry of Surface (Wiley-Interscience, Toronto, 1997).Google Scholar
  16. 16.
    A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].Google Scholar
  17. 17.
    A. I. Rusanov, Surf. Sci. Rep. 23, 173 (1996).CrossRefGoogle Scholar
  18. 18.
    J. L. Ericksen, Introduction to the Thermodynamics of Solids (Springer, New York, Berlin, Heidelberg, 1998).CrossRefGoogle Scholar
  19. 19.
    G. W. Gibbs, Thermodynamical Works (Gostekhizdat, Moscow, Leningrad, 1950) [in Russian].Google Scholar
  20. 20.
    S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids (Springer, Berlin, 1960; Inostr. Liter., Moscow, 1963).Google Scholar
  21. 21.
    J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford Univ., Oxford, U.K., 1978).Google Scholar
  22. 22.
    Yu. K. Tovbin, Russ. J. Phys. Chem. A 88, 1932 (2014).CrossRefGoogle Scholar
  23. 23.
    W. J. Dunning, in The Solid-Gas Interface, Ed. by E. A. Flood (Marcel Dekker, New York, 1967), p. 271.Google Scholar
  24. 24.
    Ya. I. Frenkel’, Zh. Fiz. Khim. 19, 392 (1945).Google Scholar
  25. 25.
    W. K. Burton, N. Cabrera, and F. Frank, Phil. Trans. R. Soc., Ser. A 243, 299 (1951).Google Scholar
  26. 26.
    Y. Saito and H. Muller-Krumbhaar, J. Chem. Phys. 70, 1078 (1979).CrossRefGoogle Scholar
  27. 27.
    T. A. Cherepanova, J. Cryst. Growth 52, 319 (1981).CrossRefGoogle Scholar
  28. 28.
    Yu. K. Tovbin, Dokl. Akad. Nauk SSSR 267, 1415 (1982).Google Scholar
  29. 29.
    Yu. K. Tovbin, Dokl. Akad. Nauk SSSR 277 (4), 917 (1984).Google Scholar
  30. 30.
    Yu. K. Tovbin, Poverkhnost’. Fiz. Khim. Mekh., No. 5, 5 (1989).Google Scholar
  31. 31.
    Yu. K. Tovbin, Prog. Surf. Sci. 34, 1 (1990).CrossRefGoogle Scholar
  32. 32.
    Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas-Solid Interface (Nauka, Moscow, 1990) [in Russian].Google Scholar
  33. 33.
    Yu. K. Tovbin, E. S. Zaitseva, and A. B. Rabinovich, Russ. J. Phys. Chem. A 92, 587 (2018).CrossRefGoogle Scholar
  34. 34.
    E. S. Zaitseva and Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 1011 (2018).CrossRefGoogle Scholar
  35. 35.
    E. S. Zaitseva and Yu. K. Tovbin, Prot. Met. Phys. Chem. Surf. 54, 557 (2018).CrossRefGoogle Scholar
  36. 36.
    Yu. K. Tovbin, Kinet. Katal. 24 (2), 317 (1983).Google Scholar
  37. 37.
    Yu. K. Tovbin, A. B. Rabinovich, and E. E. Gvozdeva, Russ. J. Phys. Chem. A 88, 1809 (2014).CrossRefGoogle Scholar
  38. 38.
    Yu. K. Tovbin, A. B. Rabinovich, and E. E. Gvozdeva, Prot. Met. Phys. Chem. Surf. 51, 41 (2015).CrossRefGoogle Scholar
  39. 39.
    Yu. K. Tovbin, E. S. Zaitseva, and A. B. Rabinovich, Russ. J. Phys. Chem. A 90, 205 (2016).CrossRefGoogle Scholar
  40. 40.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  41. 41.
    Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 58, 2193 (2009).CrossRefGoogle Scholar
  42. 42.
    Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 59, 677 (2010).CrossRefGoogle Scholar
  43. 43.
    Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 705 (2010).CrossRefGoogle Scholar
  44. 44.
    Yu. K. Tovbin, D. V. Eremich, V. N. Komarov, and E. E. Gvozdeva, Khim. Fiz. 26 (9), 98 (2007).Google Scholar
  45. 45.
    Yu. K. Tovbin, E. S. Zaitseva, and A. B. Rabinovich, Russ. J. Phys. Chem. A 90, 1248 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. K. Tovbin
    • 1
    Email author
  • E. S. Zaitseva
    • 1
  • E. E. Gvozdeva
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations