Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 543–547 | Cite as

Features of Diffusion of Lead Atoms Embedded into a Defective Cu(111) Surface

  • A. S. ProstnevEmail author
  • B. R. Shub
SURFACE REACTIONS

Abstract

The results of calculations of energy barriers to the vacancy-mediated diffusion of Pb atoms embedded into the Cu(111) surface layer using quantum chemical density-functional theory are described. It is shown that the rate-limiting step of the migration of lead atoms is the degradation of the long-lived Pb–vacancy complex, not vacancy diffusion, as was observed for various impurity atoms on the Cu(100) face. The calculated energy barriers to the formation and degradation of this complex are 0.51 and 0.83 eV, respectively, while the barrier to monovacancy diffusion is 0.55 eV. The possibility of accelerating the diffusion of impurity Pb atoms at a high vacancy concentration owing to collisions of the Pb–vacancy complex with another vacancy is discussed.

Keywords:

surface diffusion diffusion coefficient impurity atom vacancy density functional theory 

Notes

FUNDING

This work was performed under a state task of the Russian Federation (task no. 45.9, 0082-2014-0011, AAAA-A17-117111600093-8) and supported by the Russian Foundation for Basic Research (project nos. 16-29-05119 and 17-03-00275).

REFERENCES

  1. 1.
    P. A. Thiel, M. Shen, Da-Jiang Liu, and J. W. Evans, J. Phys. Chem. 113, 5947 (2009).CrossRefGoogle Scholar
  2. 2.
    T. Flores, S. Junghans, and M. Wutting, Surf. Sci. 371, 14 (1997).CrossRefGoogle Scholar
  3. 3.
    A. K. Schmid, J. C. Hamilton, N. C. Bartelt, et al., Phys. Rev. Lett. 77, 2977 (1996).CrossRefGoogle Scholar
  4. 4.
    R. van Gastel, E. Somfai, W. van Saarloos, et al., Nature (London, U.K.) 408, 665 (2000).CrossRefGoogle Scholar
  5. 5.
    R. van Gastel, E. Somfai, S. B. van Albada, et al., Phys. Rev. Lett. 86, 1562 (2001).CrossRefGoogle Scholar
  6. 6.
    R. van Gastel, R. van Moere, H. J. W. Zandvliet, et al., Surf. Sci. 605, 1956 (2011).CrossRefGoogle Scholar
  7. 7.
    M. L. Grant, B. S. Swartzentruber, N. C. Bartelt, et al., Phys. Rev. Lett. 86, 4588 (2001).CrossRefGoogle Scholar
  8. 8.
    M. L. Anderson, N. C. Bartelt, and B. S. Swartzentruber, Surf. Sci. 538, 53 (2003).CrossRefGoogle Scholar
  9. 9.
    M. L. Anderson, M. J. D’Amato, P. J. Feibelman, et al., Phys. Rev. Lett. 90, 126102 (2003).CrossRefGoogle Scholar
  10. 10.
    P. Stoltze, J. Phys.: Condens. Matter 6, 9495 (1994).Google Scholar
  11. 11.
    M. Karimi, N. Nomkowski, G. Vilali, et al., Phys. Rev. B 52, 5364 (1995).CrossRefGoogle Scholar
  12. 12.
    E. Kackell, F. Beechstedt, and G. Kresse, Phys. Rev. B 61, 4576 (2000).Google Scholar
  13. 13.
    G. Colizzi, G. Biddau, and V. Fiorentini, Phys. Rev. B 79, 165441 (2009).CrossRefGoogle Scholar
  14. 14.
    S. Mirabella, D. De Salvador, E. Napolitani, et al., J. Appl. Phys. 113, 031101 (2013).CrossRefGoogle Scholar
  15. 15.
    A. L. Claire, J. Nucl. Mater. 69, 70 (1978).CrossRefGoogle Scholar
  16. 16.
    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 11, 538 (2017).CrossRefGoogle Scholar
  17. 17.
    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 7, 568 (2013).CrossRefGoogle Scholar
  18. 18.
    A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 8, 420 (2014).CrossRefGoogle Scholar
  19. 19.
    www.openmx-square.org.Google Scholar
  20. 20.
    N. E. B. Cowern, K. T. F. Janssen, G. F. A. van de Walle, et al., Phys. Rev. Lett. 65, 2434 (1990).CrossRefGoogle Scholar
  21. 21.
    N. E. B. Cowern, G. F. A. van de Walle, D. J. Gravesteijn, et al., Phys. Rev. Lett. 67, 212 (1991).CrossRefGoogle Scholar
  22. 22.
    V. I. Tokar, https://arhiv.org/abs/1806.08394.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations