Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 452–457 | Cite as

Formation and Stabilization of Au, Ag, Ru, and Rh Metallic and Bimetallic Nanoparticles in Inverse Micellar Solutions

  • K. F. ChernyshevaEmail author
  • A. A. Revina


The work presents research data on the optical properties of nanosized particles of silver, gold, rhodium and ruthenium prepared by chemical reduction of the Men+ ions in inverse micellar solutions (IMS) in the presence of molecular oxygen and the flavonoid reducer quercetin. Metallic nanoparticles and the bimetallic particles Au/Ag, Au/Ru, and Au/Rh were produced by the molecule-by-molecule method. Using UV–VIS spectrophotometry, the spectral characteristics of the monometallic and bimetallic nanoparticles were examined, and the kinetics of their formation in IMS was studied.


metal nanoparticles bimetals inverse micelles degree of hydration UV–VIS spectrophotometry electron-plasmon resonance 



  1. 1.
    A. O. Kucherik, S. V. Kutrovskaya, A. V. Osipov, et al., Izv. YuFU, Tekh. Nauki, No. 9, 101 (2015).Google Scholar
  2. 2.
    L. V. Shapoval, T. B. Boitsova, V. V. Gorbunova, A. Yu. Vakhrushev, and T. A. Arkhipova, Russ. J. Gen. Chem. 11, 290 (2011).CrossRefGoogle Scholar
  3. 3.
    M. O. Sergeev, A. Yu. Antonov, A. A. Revina, et al., Usp. Khim. Khim. Tekhnol. 26 (7), 33 (2012).Google Scholar
  4. 4.
    K. F. Chernyshova and A. A. Revina, Kondens. Sredy Mezhfaz. Granitsy 20, 296 (2018). Google Scholar
  5. 5.
    S. P. Turanskaya, A. D. Chetyrkin, I. V. Dubrovin, et al., Poverkhnost’, No. 3, 343 (2011).Google Scholar
  6. 6.
    N. K. Eremenko, V. G. Dodonov, Yu. A. Zakharov, I. I. Obraztsova, and A. N. Eremenko, Vestn. Kemer. Univ. 3 (3), 189 (2014).Google Scholar
  7. 7.
    A. A. Revina, RF Patent No. 2312741, Byull. Izobret., No. 35 (2007).Google Scholar
  8. 8.
    B. H. Robinson, A. N. Khan-Lodhi, and T. Towey, in Structure and Reactivity in Reverse Micelles, Ed. by M.-P. Pileni (Elsevier, Amsterdam, New York, Toronto, 1989)), p. 199.Google Scholar
  9. 9.
    M. P. Pileni, Langmuir 13, 3266 (1997).CrossRefGoogle Scholar
  10. 10.
    C. G. M. Heijnen, G. R. M. M. Haenen, F. A. A. van Acker, W. J. F. van Der, and A. Bast, Toxicol. Vitro 15, 3 (2001).CrossRefGoogle Scholar
  11. 11.
    D. Metodiewa, A. K. Jaiswal, N. Cenas, E. Dickancaite, and J. Segura-Aguilar, Free Radical Biol. Med. 26, 107 (1999).CrossRefGoogle Scholar
  12. 12.
    K. F. Chernyshova and A. A. Revina, Naukoemk. Tekhnol. 18 (1), 45 (2017).Google Scholar
  13. 13.
    O. V. Dement’eva, A. V. Mal’kovskii, M. A. Filippenko, and V. M. Rudoy, Colloid. J. 70, 561 (2008).CrossRefGoogle Scholar
  14. 14.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  15. 15.
    M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), p. 38.Google Scholar
  16. 16.
    B. G. Ershov, Zh. Ros. Khim. Ob-va im. D. I. Mendeleeva 45 (3), 20 (2001).Google Scholar
  17. 17.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).CrossRefGoogle Scholar
  18. 18.
    A. Yu. Antonov, O. A. Boeva, A. A. Revina, and K. F. Nurtdinova, Persp. Mater. Spets. Vyp., No. 10, 268 (2011).Google Scholar
  19. 19.
    M. O. Sergeev, O. A. Boeva, and K. N. Zhavoronkova, Usp. Khim. Khim. Tekhnol. 28 (6), 122 (2014).Google Scholar
  20. 20.
    A. F. Shoair, A. A. El-Bindary, and M. K. Abd El-Kader, J. Mol. Struct., No. 1143, 100 (2017).
  21. 21.
    A. A. Revina, Prot. Met. Phys. Chem. Surf. 45, 54 (2009).CrossRefGoogle Scholar
  22. 22.
    P. G. Kuzmin, G. A. Shafeev, A. V. Simakin, and V. V. Voronov, Phys. Wave Phenom. 16, 261 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of ScienceMoscowRussia

Personalised recommendations