Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 3, pp 486–501 | Cite as

Formation of Chiral and Supercoiled Structures in Photoinduced Formose Reaction in the de novo Model

  • S. V. StovbunEmail author
  • A. M. Zanin
  • A. A. Skoblin
  • M. A. Tregubova
  • V. A. Tverdislov
  • O. P. Taran
  • V. N. Parmon
CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • 5 Downloads

Abstract

In a de novo physicochemical modeling, the synthesis of biologically important sugars and other chiral compounds without any chemical initiators is demonstrated for the first time by photolysis of a concentrated formaldehyde solution and subsequent condensation of the product; chiral condensed phase detected; the splitting of enantiomers in terms of chirality sign at the moment of condensation is determined; hierarchical (three-level) helical structure of the optically active anisometric phase (strings) is detected, in which the strings of a larger diameter consists of helically plaited strings of a smaller diameter; it was found that the direction of twisting of the strings when they are helically plaited from the strings of the previous hierarchical level is determined by their supramolecular chirality (the sign of an excess of the left or right helical supramolecular submicroscopic structures); it was shown that structure formation in systems similar to prebiological may occur through the mechanism of supercoiling already in an aqueous solution of sugars with molecular weights μ of ~102 Da, that is, much earlier than linear chiral macromolecules are formed. The results are obtained under conditions that correspond to modern ideas about the form and vector of prebiological evolution, and therefore may be of fundamental importance for molecular biology.

Keywords:

chirality formose reaction self-organization supercoiling evolution formaldehyde 

Notes

FUNDING

This work was supported by FASO Russia (project V.47.1.3).

REFERENCES

  1. 1.
    V. I. Gol’danskii and V. V. Kuz’min, Sov. Phys. Usp. 32, 1 (1989).CrossRefGoogle Scholar
  2. 2.
    V. A. Tverdislov, A. E. Sidorova, and L. V. Yakovenko, Biophysical Ecology (URSS, KRASAND, Moscow, 2012) [in Russian].Google Scholar
  3. 3.
    V. A. Tverdislov, Biophysics 58, 128 (2013).CrossRefGoogle Scholar
  4. 4.
    C. V. Stovbun, A. A. Skoblin, and V. A. Tverdislov, Biophysics 59, 876 (2014).CrossRefGoogle Scholar
  5. 5.
    S. V. Stovbun, Doctoral (Phys. Math.) Dissertation (Inst. Chem. Phys. RAS, Moscow, 2012).Google Scholar
  6. 6.
    I. I. Artobolevskii, Theory of Mechanisms and Machines (Nauka, Moscow, 1988) [in Russian].Google Scholar
  7. 7.
    S. V. Stovbun, A. A. Skoblin, Ya. A. Litvin, A. A. Kirsankin, M. V. Grishin, B. R. Shub, Y. V. Zubavichus, A. A. Veligzhanin, L. D. Popov, E. A. Raspopova, and Y. N. Tkachenko, Russ. J. Phys. Chem. B 8, 801 (2014).CrossRefGoogle Scholar
  8. 8.
    A. A. Skoblin and S. V. Stovbun, Byull. Eksp. Biol. Med. 159, 561 (2015).CrossRefGoogle Scholar
  9. 9.
    S. V. Stovbun, A. A. Skoblin, Ya. A. Litvin, M. G. Mikhaleva, and V. A. Tverdislov, Mosc. Univ. Phys. Bull. 70, 45 (2015).CrossRefGoogle Scholar
  10. 10.
    S. V. Stovbun, A. A. Skoblin, and V. A. Tverdislov, Vestn. Mosk. Univ., Ser. Fiz. Astron., No. 12, 643 (2011).Google Scholar
  11. 11.
    S. V. Stovbun, A. A. Skoblin, and A. M. Zanin, Russ. J. Phys. Chem. B 8, 293 (2014).CrossRefGoogle Scholar
  12. 12.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, et al., Byull. Eksp. Biol. Med. 154 (7), 41 (2012).CrossRefGoogle Scholar
  13. 13.
    S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 274 (2012).CrossRefGoogle Scholar
  14. 14.
    D. V. Zlenko and S. V. Stovbun, Russ. J. Phys. Chem. B 8, 499 (2014).CrossRefGoogle Scholar
  15. 15.
    S. V. Stovbun, Russ. J. Phys. Chem. B 5, 546 (2011).CrossRefGoogle Scholar
  16. 16.
    S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 317 (2012).CrossRefGoogle Scholar
  17. 17.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, and A. A. Berlin, Dokl. Phys. Chem. 442, 36 (2012).CrossRefGoogle Scholar
  18. 18.
    S. V. Stovbun, M. G. Mikhaleva, A. A. Skoblin, and V. A. Tverdislov, Structure Formation in Chiral Systems. Supramolecular Strings (Mosk. Gos. Univ., Moscow, 2016) [in Russian].Google Scholar
  19. 19.
    M. G. Mikhaleva, Cand. Sci. (Phys. Math.) Dissertation (Inst. Chem. Phys. RAS, Moscow, 2017).Google Scholar
  20. 20.
    V. S. Safronov, The Evolution of the Protoplanetary Cloud and the Formation of the Earth and the Planets (Nauka, Moscow, 1969) [in Russian].Google Scholar
  21. 21.
    Ya. A. Litvin, A. A. Skoblin, and S. V. Stovbun, Russ. J. Phys. Chem. B 11, 146 (2017).CrossRefGoogle Scholar
  22. 22.
    Ya. A. Litvin, Cand. Sci. (Phys. Math.) Dissertation (Mosc. State Univ., Moscow, 2016).Google Scholar
  23. 23.
    D. V. Zlenko, M. G. Mikhaleva, and S. V. Stovbun, Russ. J. Phys. Chem. B 10, 531 (2016).CrossRefGoogle Scholar
  24. 24.
    D. V. Zlenko, M. A. Tregubova, and S. V. Stovbun, Russ. J. Phys. Chem. B 11, 343 (2017).CrossRefGoogle Scholar
  25. 25.
    A. M. Zanin, D. V. Zlenko, Ya. A. Litvin, A. A. Skoblin, and S. V. Stovbun, Russ. J. Phys. Chem. B 12, 394 (2018).CrossRefGoogle Scholar
  26. 26.
    A. M. Butlerov, in Writings (Akad. Nauk SSSR, Moscow, 1953), Vol. 1, p. 63 [in Russian].Google Scholar
  27. 27.
    T. I. Khomenko, M. M. Sakharov, and O. A. Golovina, Russ. Chem. Rev. 49, 570 (1980).CrossRefGoogle Scholar
  28. 28.
    O. P. Pestunova, A. N. Simonov, V. N. Snytnikov, and V. N. Parmon, Biosphere Origin and Evolution, Ed. by N. Dobretsov, N. Kolchanov, A. Rozanov, and G. Zavarzin (Springer, 2008), p. 103.Google Scholar
  29. 29.
    I. V. Delidovich, A. N. Simonov, O. P. Taran, and V. N. Parmon, ChemSusChem. 7, 1833 (2014).CrossRefGoogle Scholar
  30. 30.
    R. F. Socha, A. H. Weiss, and M. M. Sakharov, J. Catal. 67, 207 (1981).CrossRefGoogle Scholar
  31. 31.
    A. N. Simonov, O. P. Pestunova, L. G. Matvienko, and V. N. Parmon, Kinet. Catal. 48, 245 (2007).CrossRefGoogle Scholar
  32. 32.
    A. Irie, Carbohydr. Res. 190, 23 (1989).CrossRefGoogle Scholar
  33. 33.
    E. C. Baly, Ind. Eng. Chem. 16, 1016 (1924).CrossRefGoogle Scholar
  34. 34.
    Y. Shigemasa, Y. Matsuda, C. Sakazawa, and T. Matsura, Bull. Chem. Soc. Jpn. 50, 222 (1977).CrossRefGoogle Scholar
  35. 35.
    O. Pestunova, A. Simonov, V. Snytnikov, V. Stoyanovsky, and V. Parmon, Space Life Sciences: Astrobiology: Steps Toward Origin of Life and Titan Before Cassini, Ed. by M. Bernstein, R. Navarro González, and R. Raulin (Elsevier, Oxford, 2005), p. 214.Google Scholar
  36. 36.
    I. V. Delidovich, O. P. Taran, A. N. Simonov, L. G. Matvienko, and V. N. Parmon, Adv. Space Res. 48, 441 (2011).CrossRefGoogle Scholar
  37. 37.
    O. A. Snytnikova, A. N. Simonov, O. P. Pestunova, V. N. Parmon, and Y. P. Tsentalovich, Mendeleev Commun. 15 (1), 9 (2006).CrossRefGoogle Scholar
  38. 38.
    A. V. Obolenskaya, Laboratory Work on the Chemistry of Wood and Cellulose (Ekolotiya, Moscow, 1991) [in Russian].Google Scholar
  39. 39.
    H. K. Kutseva, Chemical Encyclopedy (Sov. Entsikl., Moscow, 1988–1998), Vols. 3–5 [in Russian].Google Scholar
  40. 40.
    J. M. Longmore, I. B. Wilkinson, and S. R. Rajagopalan, Oxford Handbook of Clinical Medicine (Oxford Univ. Press, Oxford, 2004).Google Scholar
  41. 41.
    G. S. Landsberg, Optics (Fizmatlit, Moscow, 2003) [in Russian].Google Scholar
  42. 42.
    M. Kleman and O. D. Lavrentovich, Fundamentals of Physics, Partially Ordered Fluids Liquid Crystals, Colloids, Fractal Structures, Polymers and Biological Objects (Fizmalit, Moscow, 2007) [in Russian].Google Scholar
  43. 43.
    P. G. de Gennes, Liquid Crystals (Clarendon, Oxford, 1974).Google Scholar
  44. 44.
    S. V. Stovbun and A. A. Skoblin, Khim. Fiz. 31 (7), 7 (2012).Google Scholar
  45. 45.
    S. V. Stovbun, A. M. Zanin, D. S. Skorobogat’ko, A. A. Skoblin, Ya. A. Litvin, A. I. Mikhailov, O. N. Krutius, and R. G. Kostyanovskii, Russ. J. Phys. Chem. B 6, 341 (2012).CrossRefGoogle Scholar
  46. 46.
    S. V. Stovbun, A. M. Zanin, A. A. Skoblin, D. P. Shashkin, A. I. Mikhailov, M. V. Grishin, and B. R. Shub, Russ. J. Phys. Chem. B 7, 1 (2013).CrossRefGoogle Scholar
  47. 47.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, D. P. Shashkin, A. A. Berlin, and V. A. Tverdislov, Dokl. Phys. Chem. 450, 138 (2013).CrossRefGoogle Scholar
  48. 48.
    A. A. Skoblin, A. M. Zanin, and S. V. Stovbun, Russ. J. Phys. Chem. B 8, 302 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Stovbun
    • 1
    Email author
  • A. M. Zanin
    • 1
  • A. A. Skoblin
    • 1
  • M. A. Tregubova
    • 1
  • V. A. Tverdislov
    • 2
  • O. P. Taran
    • 3
    • 4
    • 5
  • V. N. Parmon
    • 4
    • 6
    • 7
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  4. 4.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  5. 5.Siberian Federal UniversityKrasnoyarskRussia
  6. 6.Novosibirsk State UniversityNovosibirskRussia
  7. 7.Tomsk State UniversityTomskRussia

Personalised recommendations