Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 2, pp 305–312 | Cite as

Study of Combustion of Hydrogen—Air and Hydrogen—Methane—Air Mixtures over the Palladium Metal Surface Using a Hyperspectral Sensor and High-Speed Color Filming

  • N. M. RubtsovEmail author
  • A. N. Vinogradov
  • A. P. Kalinin
  • A. I. Rodionov
  • I. D. Rodionov
  • K. Ya. Troshin
  • G. I. Tsvetkov
  • V. I. Chernysh
Combustion, Explosion, and Shock Waves
  • 3 Downloads

Abstract

The ignition temperature of the 40% H2 + air mixture in the presence of metallic palladium (70°C, 1 atm) was found to be ~200°C lower than above the platinum surface (260°C, 1 atm). In addition, Pd initiated the ignition of (30–60% H2 + 70–40% CH4)stoich + air mixtures at temperatures below 350°C, while Pt foil did not initiate the burning of these mixtures up to 450°C. The effective activation energy of ignition over Pd was evaluated to be ~3.5 kcal/mol. It was found using a hyperspectral sensor that the system of emission bands of H2O* was absent in the range 570–650 nm in the presence of leucosapphire; a possible explanation of this phenomenon was given. An explanation was proposed for the appearance of an additional source of excited water molecules emitting in the range 900–970 nm.

Key words

combustion hydrogen–air–palladium mixture hydrogen–methane–air mixture palladium high-speed color filming hyperspectrometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The experimental study of combustion of hydrogen—air and hydrogen—methane—air mixtures over the surface of metallic palladium using both a hyperspectral sensor and high-speed color filming was performed within the framework of state tasks nos. AAAA-A17-117040610346-5 and AAAA-A17-117021310376-4; the results of experiments were processed within the framework of state tasks nos. AAAA-A17-117112240026-5 and AAAA-A17-117011910011-09.

References

  1. 1.
    H. Davy, Philos. Trans. R. Soc. London, Ser. A 107, 77 (1817).CrossRefGoogle Scholar
  2. 2.
    J. H. Lee and D. Trimm, Fuel Process. Technol. 42, 339 (1995).CrossRefGoogle Scholar
  3. 3.
    O. Deutschmann, L. I. Maier, U. Riedel, et al., Catal. To day 59, 141 (2000).CrossRefGoogle Scholar
  4. 4.
    M. Lyubovsky, H. Karim, P. Menacherry, et al., Catal. To day 83, 183 (2003).CrossRefGoogle Scholar
  5. 5.
    S. Salomons, R. E. Hayes, M. Poirier, et al., Catal. To day 83, 59 (2003).CrossRefGoogle Scholar
  6. 6.
    J. K. Lampert, M. S. Kazia, and R. J. Farrauto, Appl. Catal., B 14, 211 (1997).CrossRefGoogle Scholar
  7. 7.
    IAEA Safety Standards Series, Design of Reactor Containment Systems for Nuclear Power Plants, Safety Guide No. NS-G-1.10 (2004).Google Scholar
  8. 8.
    A. Frennet, Cat. Rev.–Sci. Eng. 10, 37 (1974).CrossRefGoogle Scholar
  9. 9.
    C. F. Cullis and B. M. Willatt, J. Catal. 83, 267 (1983).CrossRefGoogle Scholar
  10. 10.
    R. F. Hicks, H. Qi, and M. L. Young, J. Catal. 122, 280 (1990).CrossRefGoogle Scholar
  11. 11.
    R. E. Hayes, S. Kolaczkowskii, P. Lib, et al., Chem. Eng. Sci. 56, 4815 (2001).CrossRefGoogle Scholar
  12. 12.
    S. Choudhury, R. Sasikala, V. Saxena, et al., Dalton Trans. 41, 12090 (2012).CrossRefGoogle Scholar
  13. 13.
    P. O. Nilsson and M. S. Shivaraman, J. Phys. C: Solid State Phys. 12, 1423 (1979).CrossRefGoogle Scholar
  14. 14.
    F. Ling, O. C. Anthony, Q. Xiong, et al., Int. J. Hydrogen Energy 41, 6115 (2016).CrossRefGoogle Scholar
  15. 15.
    C. Diaz, M. L. Valenzuela, C. Rios, et al., J. Chil. Chem. Soc 61, 3281 (2016).CrossRefGoogle Scholar
  16. 16.
    I. D. Rodionov, A. I. Rodionov, L. A. Vedeshin, A. N. Vinogradov, V. V. Egorov, and A. P. Kalinin, Issled. Zemli i Kosmosa, No. 6, 81 (2013).Google Scholar
  17. 17.
    A. N. Vinogradov, V. V. Egorov, A. P. Kalinin, A. I. Rodionov, and I. D. Rodionov, J. Opt. Technol. 83, 237 (2016).CrossRefGoogle Scholar
  18. 18.
    A. P. Kalinin, A. G. Orlov, A. I. Rodionov, et al., Fiz. Khim. Kinet. Gaz. Dinam. 8 (2009). http://chemphys.edu.ru/issues/2009-8/articles/202/
  19. 19.
    N. M. Rubtsov, B. S. Seplyarskii, K. Ya. Troshin, et al., Mendeleev Commun. 22, 222 (2012).CrossRefGoogle Scholar
  20. 20.
    N. M. Rubtsov, B. S. Seplyarskii, K. Ya. Troshin, et al., Mendeleev Commun. 21, 31 (2011).CrossRefGoogle Scholar
  21. 21.
    N. M. Rubtsov, B. S. Seplyarskii, V. I. Chernysh, et al., Mendeleev Commun. 27, 307 (2017).CrossRefGoogle Scholar
  22. 22.
    N. M. Rubtsov, A. N. Vinogradov, A. P. Kalinin, et al., Mendeleev Commun. 26, 160 (2016).CrossRefGoogle Scholar
  23. 23.
    K. L. Cashdollar, I. A. Zlochower, G. M. Green, et al., J. Loss Prevent. Process. Ind. 13, 327 (2000).CrossRefGoogle Scholar
  24. 24.
    B. Lewis and G. von Elbe, Combustion, Explosions and Flame in Gases (Academic, New York, London, 1987).Google Scholar
  25. 25.
    S. M. Repinskii, Introduction to Chemical Physics of Solid Surfaces (Sibir’, Novosibirsk, 1993) [in Russian].Google Scholar
  26. 26.
    E. Skulason and G. Nielsen, et al., Surf. Sci. 60, 718 (2010).Google Scholar
  27. 27.
    L. S. Rothman, I. E. Gordon, Y. Babikov, et al., J. Quant. Spectrosc. Radiat. Transfer 130, 4 (2013).CrossRefGoogle Scholar
  28. 28.
    N. M. Rubtsov, A. N. Vinogradov, A. P. Kalinin, et al., Fiz. Khim. Kinet. Gas. Dinam. 17 (1) (2016). http://chemphys.edu.ru/issues/2016-17-1/articles/615/
  29. 29.
    R. G. Stützer, S. Kraus, and M. Oschwald, in Proceedings of the 4th Conference on Space Propulsion, May 2014. www.researchgate.net/publication/263586493
  30. 30.
    T. Icitaga, Rev. Phys. Chem. Jpn. 13f (2), 96 (1939).Google Scholar
  31. 31.
    N. M. Rubtsov, V. I. Chernysh, G. I. Tsvetkov, et al., Mendeleev Commun. 28, 216 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. M. Rubtsov
    • 1
    Email author
  • A. N. Vinogradov
    • 2
  • A. P. Kalinin
    • 3
  • A. I. Rodionov
    • 4
  • I. D. Rodionov
    • 4
  • K. Ya. Troshin
    • 4
  • G. I. Tsvetkov
    • 1
  • V. I. Chernysh
    • 1
  1. 1.Merzhanov Institute of Structural Macrokinetics and Materials SciencesRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Reagent Scientific and Technical CenterMoscowRussia
  3. 3.Ishlinskii Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  4. 4.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations