Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 2, pp 291–296 | Cite as

Effect of Oxidation of Fluorohydrocarbons and Fluorocarbons on Their Characteristics as Gas Combustion Suppressing Agents

  • S. N. KopylovEmail author
  • T. V. Gubina
Combustion Explosion, and Shock Waves

Abstract

The combustion of some fluorohydrocarbons (FHCs) and fluorocarbons (FCs) in oxygen was studied in a closed vessel at initially room temperature and atmospheric pressure. The chemical mechanism of oxidation of these compounds was discussed. To improve the characteristics of fluorinated compounds as gas combustion suppressing agents, an oxidation inhibitor should be introduced in them. After the addition of C3H8, C4H10, and C3H6 to the fluorinated compound, its minimum phlegmatizing concentration (MPC) for methane-air mixtures significantly decreased.

Keywords

fluorinated hydrocarbons concentration limits of flame propagation combustion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. N. Shebeko, V. V. Azatyan, I. A. Bolodyan, et al., Combust. Flame 121, 542 (2000).CrossRefGoogle Scholar
  2. 2.
    H. Ohtani, in Fire Safety Science, Proceedings of the 6th International Symposium of Puatier: International Association for Fire Safety Science IAFSS, 1999, p. 245.Google Scholar
  3. 3.
    N. Saito, T. Tsuruda, and K. Sacurai, in Fire Safety Science, Proceedings of the 6th International Symposium of Puatier: International Association for Fire Safety Science IAFSS, 1999, p. 411.Google Scholar
  4. 4.
    T. Noto, V. Babushok, A. Hamins, and W. Tsang, Combust. Flame 112, 147 (1998).CrossRefGoogle Scholar
  5. 5.
    B. Walravens, F. Battin-Leclerc, G. M. Come, and F. Baronnet, Combust. Flame 103, 339 (1995).CrossRefGoogle Scholar
  6. 6.
    W. L. Grosshandler and G. W. Gmurchzyk, in Fire Safety Science, Proceedings of the 5th International Symposium of IAFSS, Melbourne, 1997, p. 853.Google Scholar
  7. 7.
    G. W. Gmurchzyk, W. L. Grosshandler, and D. L. Lowe, in Fire Safety Science, Proceedings of the 4th International Symposium of IAFSS, Ottawa, 1995, p. 925.Google Scholar
  8. 8.
    G. Holmstedt, P. Andersson, and J. Andersson, in Fire Safety Science, Proceedings of the 4th International Symposium of IAFSS, 1995, p. 853.Google Scholar
  9. 9.
    A. Drakon and A. Eremin, Combust. Flame 162, 2746 (2015).CrossRefGoogle Scholar
  10. 10.
    J. L. Pagliaro, G. T. Linteris, P. B. Sunderland, and P. T. Baker, Combust. Flame 162, 41 (2015).CrossRefGoogle Scholar
  11. 11.
    V. I. Babushok, G. T. Linteris, D. R. Burgess, and P. T. Baker, Combust. Flame 162, 1104 (2015).CrossRefGoogle Scholar
  12. 12.
    G. T. Linteris, V. I. Babushok, P. B. Sunderland, T. Takahashi, V. R. Katta, and O. Meier, Proc. Combust. Inst. 34, 2683 (2013).CrossRefGoogle Scholar
  13. 13.
    Ya. A. Lisochkin and V. I. Poznyak, Combust. Explos. Shock Waves 37, 32 (2001).Google Scholar
  14. 14.
    R. A. Matula, D. I. Orloff, and J. T. Agnew, Combust. Flame 14, 97 (1970).CrossRefGoogle Scholar
  15. 15.
    E. F. Croomes, Combust. Flame 10, 77 (1966).CrossRefGoogle Scholar
  16. 16.
    V. I. Babushok, G. T. Linteris, and O. C. Meier, Combust. Flame 159, 3569 (2012).CrossRefGoogle Scholar
  17. 17.
    S. G. Tsarichenko, V. Yu. Navtsenya, Yu. N. Shebeko, and S. M. Lashkin, in Fire Hazard of Substances and Materials Used in Industry, Collection of Articles (VNIIPO, Moscow, 1987), p. 3 [in Russian].Google Scholar
  18. 18.
    Yu. N. Shebeko, Combust. Flame 102, 427 (1995).CrossRefGoogle Scholar
  19. 19.
    C. H. Douglass, B. A. Williams, and J. R. McDonald, Combust. Flame 107, 475 (1996).CrossRefGoogle Scholar
  20. 20.
    V. Babushok, T. Noto, D. R. F. Burgess, and W. Tsang, Combust. Flame 107, 351 (1996).CrossRefGoogle Scholar
  21. 21.
    J. A. Manion, R. E. Huie, R. D. Levin, D. R. Burgess, Jr., V. L. Orkin, W. Tsang, W. S. McGivern, J. W. Hudgens, V. D. Knyazev, D. B. Atkinson, E. Chai, A. M. Tereza, C.-Y. Lin, T. C. Allison, W. G. Mallard, et al., NIST Chemical Kinetics Database. NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8 (Natl. Inst. Standards Technol., Gaithersburg, Maryland, 2015). http://kinetics.nist.gov/ReactionDesign.Google Scholar
  22. 22.
    Reaction Workbench 15131. San Diego, 2013. http://reactiondesign.com/products/chemkin/chemkin-2/
  23. 23.
    S. N. Kopylov, Doctoral (Tech. Sci.) Dissertation (All-Russ. Res. Inst. Fire Protect. Ministry RF, Balashikha, Russia, 2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.All-Russian Research Institute for Fire ProtectionBalashikha, Moscow oblastRussia
  2. 2.National Research Nuclear University MEPhiMoscowRussia

Personalised recommendations