Russian Journal of Physical Chemistry B

, Volume 13, Issue 2, pp 362–368 | Cite as

Mechanism of Catalytic Polymerization of 2-Hydroxyethyl Methacrylate under the Influence of Vanadium(IV) Oxo Complex

  • S. N. KholuiskayaEmail author
  • A. A. Gridnev
Chemical Physics of Polymer Materials


An oxovanadium(IV) complex with dimethyl sulfoxide exhibits a substantial catalytic activity for the reaction of polymerization of 2-hydroxyethyl methacrylate (HEMA) with high selectivity for monomer. The complex does not catalyze polymerization of other monomers, including other methacrylates. A carbo-chain structure of polymeric HEMA is established by 13 C NMR. The resulting poly-HEMA has a narrow unimodal molecular mass distribution. It is found that the polymerization is catalytic in nature. A coordination mechanism for this polymerization is proposed.


2-hydroxyethyl methacrylate coordination polymerization vanadium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was performed within topic no. 45.11 of the Federal Agency of Scientific Organizations of Russia under State assignment no. 0082-2014-0009 (State registration no. AAAA-A17-117040610309-0) and State assignment no. 0082-2014-0015 (State registration no. AAAA-A17-117032750201-9).


  1. 1.
    Z. Jia and D. Yan, J. Polym. Sci., Part A 43, 3502 (2005).CrossRefGoogle Scholar
  2. 2.
    Y. Chen, Z. Shen, E. Barriau, et al., Biomacromole-cules 7, 919 (2006).CrossRefGoogle Scholar
  3. 3.
    Y. Miura, T. Shibata, K. Satoh, et al., J. Am. Chem. Soc. 128, 16026 (2006).CrossRefGoogle Scholar
  4. 4.
    F.-J. Xu, E.-T. Kang, and K.-G. Neoh, Biomaterials 27, 2787 (2006).CrossRefGoogle Scholar
  5. 5.
    O. J. Cayre, N. Chagneux, and S. Biggs, Soft Matter 7, 2211 (2011).CrossRefGoogle Scholar
  6. 6.
    K.-H. Hsieh and T.-H. Young, in Polymeric Materials Encyclopedia, Ed. by J. C. V. Salamon (CRC, Boca Raton, 1996), Vol. 5, p. 3087.Google Scholar
  7. 7.
    K. L. Beers, S. Boo, S. G. Gaynor, et al., Macromole-cules 32, 5772 (1999).CrossRefGoogle Scholar
  8. 8.
    K. L. Robinson, M. A. Khan, M. V. de Paz Banez, et al., Macromolecules 34, 3155 (2001).CrossRefGoogle Scholar
  9. 9.
    R. L. Teoh, K. B. Guice, and Y.-L. Loo, Macromole-cules 39, 8609 (2006).CrossRefGoogle Scholar
  10. 10.
    X. Bories-Azeau, S. P. Armes, and H. J. W. van den Haak, Macromolecules 37, 2348 (2004).CrossRefGoogle Scholar
  11. 11.
    J. K. Oh and K. Matyjaszewski, J. Polym. Sci., Part A 44, 3787 (2006).CrossRefGoogle Scholar
  12. 12.
    S. M. Paterson, D. H. Brown, T. V. Chirila, et al., J. Polym. Sci., Part A 48, 4084 (2010).CrossRefGoogle Scholar
  13. 13.
    N. H. Nguyen, X. Leng, and V. Percec, Polym. Chem. 4, 2760 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Selbin and L. H. Holmes, J. Inorg. Nucl. Chem. 24, 1111 (1962).CrossRefGoogle Scholar
  15. 15.
    S. N. Kholuiskaya, V. V. Kasparov, and V. L. Rubailo, Kinet. Katal. 32, 1140 (1991).Google Scholar
  16. 16.
    S. N. Kholuiskaya and V. L. Rubailo, Kinet. Katal. 32, 1146 (1991).Google Scholar
  17. 17.
    A. V. Nikitin, S. N. Kholuiskaja, and V. L. Rubailo, J. Chem. Res., No. 9, 358 (1994).Google Scholar
  18. 18.
    B. A. Rozenberg, Polymer Sci., Ser. C 49, 355 (2007).CrossRefGoogle Scholar
  19. 19.
    B. A. Rozenberg, G. N. Boiko, L. L. Gur’eva, E. A. Dzhavadyan, B. A. Komarov, and G. A. Estrina, Polymer Sci., Ser. A 46, 226 (2004).Google Scholar
  20. 20.
    B. N. Patra and M. Bhattacharjee, J. Polym. Sci., Part A 44, 2749 (2006).CrossRefGoogle Scholar
  21. 21.
    A. A. Gridnev and S. D. Ittel, Chem. Rev. 101, 3611 (2001).CrossRefGoogle Scholar
  22. 22.
    O. W. Webster, W. R. Hertler, D. Y. Sogah, et al., J. Am. Chem. Soc. 105, 5706 (1983).CrossRefGoogle Scholar
  23. 23.
    O. W. Webster, Adv. Polym. Sci. 167, 1 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations