Russian Journal of Physical Chemistry B

, Volume 13, Issue 2, pp 383–388 | Cite as

Optimization of Synthesis of Nanosized Titanium Dioxide Powder Materials from Peroxo Titanium Complex

  • E. M. BayanEmail author
  • T. G. Lupeiko
  • L. E. Pustovaya
Chemical Physics of Nanomaterials


A green-chemistry method of sol-gel synthesis of nanosized titanium dioxide powder materials using a step of the formation of a peroxo titanium complex was optimized. The developed method reduces energy and reactant consumption, rules out the production of toxic wastewater contaminated with organic substances, and improves the environmental performance of the process as a whole. The obtained powder materials are nanosized, and their photocatalytic activity is higher than that of similar materials.


nanosized materials titanium dioxide peroxo titanium complex wastewater treatment photo catalysis green chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the “Modern Microscopy” Center for Shared Use of Scientific Equipment, Southern Federal University, Rostov-on-Don, Russia, for allowing us to study the microstructure of the samples.


  1. 1.
    R. C. Thompson, Phys. Inorg. Chem. 15 (38), 1 (1984). Google Scholar
  2. 2.
    M. V. Shankar, T. Kako, D. Wang, and J. Ye, J. Colloid Interface Sci. 331, 132 (2009).CrossRefGoogle Scholar
  3. 3.
    E. M. Bayan, T. G. Lupeiko, E. V. Kolupaeva, et al., in Advanced Materials Physics, Ed. by I. A. Parinov, Chang Shun-Hsyung, and M. A. Jani (Springer, Heidelberg, New York, Dordrecht, London, 2017), p. 17.
  4. 4.
    Y. Zhang, J. Bai, L. Zhou, et al., J. Colloid Interface Sci. 536, 215 (2019).CrossRefGoogle Scholar
  5. 5.
    E. M. Bayan, T. G. Lupeiko, L. E. Pustovaya, A. A. Knya-shchuk, and A. G. Fedorenko, Russ. J. Phys. Chem. B 11, 600 (2017). CrossRefGoogle Scholar
  6. 6.
    M. Hamadanian, S. Karimzadeh, V. Jabbari, and D. Villagrán, Mater. Sci. Semicond. Process. 41, 168 (2016). CrossRefGoogle Scholar
  7. 7.
    M. Crişan, N. Drâgan, D. Crişan, A. Ianculescu, et al., Ceram. Int. 42, 3088 (2016). CrossRefGoogle Scholar
  8. 8.
    P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice (New York, Oxford Univ. Press, 1998).Google Scholar
  9. 9.
    G. S. Zakharova and E. I. Andreikov, Inorg. Mater. 48, 727 (2012).CrossRefGoogle Scholar
  10. 10.
    S. Wang, H. Yu, Sh. Yuan, and L. Shi, Res. Chem. Intermed. 42, 3775 (2016). CrossRefGoogle Scholar
  11. 11.
    E. M. Bayan, T. G. Lupeiko, L. E. Pustovaya, and A. G. Fedorenko, Nanotechnol. Russ. 12, 269 (2017). CrossRefGoogle Scholar
  12. 12.
    Y. Miao and J. Gao, J. Solid State Chem. 196, 372 (2012).CrossRefGoogle Scholar
  13. 13.
    N. S. Shabanov, A. Sh. Asvarov, A. Chioleriod, et al., J. Colloid Interface Sci. 498, 306 (2017). CrossRefGoogle Scholar
  14. 14.
    Y. Li, Y. Yu, L. Wu, and J. Zhi, Appl. Surf. Sci. 273, 135 (2013). CrossRefGoogle Scholar
  15. 15.
    R. Zhang, Y. Zhang, C. Xu, et al., Proc. SPIE 8409, 84092 (2012). Google Scholar
  16. 16.
    R. Morozov, I. Krivtsova, V. Avdin, et al., J. Non-Cryst. Solids 435, 8 (2016). CrossRefGoogle Scholar
  17. 17.
    Q. Zhao, W. Wen, Y. Xia, and J. Wu, Thin Solid Films 648, 103 (2018). CrossRefGoogle Scholar
  18. 18.
    W. Low and V. Boonamnuayvitaya, Mater. Res. Bull. 48, 2809 (2013). CrossRefGoogle Scholar
  19. 19.
    M. Ilkaeva, I. Krivtsov, V. Avdin, et al., Colloids Surf., A 456, 120 (2014).CrossRefGoogle Scholar
  20. 20.
    D. Wu, F. Zhu, J. Li, and D. Xu, J. Mater. Chem. 22, 11665 (2012). CrossRefGoogle Scholar
  21. 21.
    N. Murakami, S. Kawakami, T. Tsubota, and T. Ohno, J. Mol. Catal. A: Chem. 358, 106 (2012). CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, L. Wu, Q. Zeng, and J. Zhi, Mater. Chem. Phys. 121, 235 (2010). CrossRefGoogle Scholar
  23. 23.
    Y. Liu, M. Aizawa, Z. Wang, et al., J. Colloid Interface Sci. 322, 497 (2008). CrossRefGoogle Scholar
  24. 24.
    X. Bao, S. Yan, F. Chen, and J. Zhang, Mater. Lett. 59, 412 (2005).CrossRefGoogle Scholar
  25. 25.
    D. Nguyen, W. Wang, H. Long, and H. RU, Front. Mater. Sci. 10, 23 (2016). CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, L. Wu, Q. Zeng, and J. Zhi, J. Phys. Chem. C 112, 16457 (2008). CrossRefGoogle Scholar
  27. 27.
    S. I. Seok, M. Vithal, and J. A. Chang, J. Colloid Inter face Sci. 346, 66 (2010). CrossRefGoogle Scholar
  28. 28.
    M. O. Gorbunova, E. M. Bayan, A. V. Shevchenko, and M. S. Kulyaginova, Anal. Kontrol'. 21, 274 (2017). Google Scholar
  29. 29.
    Yu. D. Tretyakov, Inorganic Chemistry (Akademiya, Moscow, 2007), Vol. 3 [in Russian].Google Scholar
  30. 30.
    V. Stengl, S. Bakardjieva, and N. Murafa, Mater. Chem. Phys. 114, 217 (2009). CrossRefGoogle Scholar
  31. 31.
    E. M. Bayan, T. G. Lupeiko, L. E. Pustovaya, and A. G. Fedorenko, in Advanced Materials Manufacturing, Physics, Mechanics and Applications, Vol. 175 of Springer Proceedings in Physics, Ed. by I. A. Parinov, Shun-Hsyung Chang, and V. Yu. Topolov (Springer, Hei delberg, New York, Dordrecht, London, 2016), p. 51. Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. M. Bayan
    • 1
    Email author
  • T. G. Lupeiko
    • 1
  • L. E. Pustovaya
    • 2
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Don State Federal UniversityRostov-on-DonRussia

Personalised recommendations