Russian Journal of Physical Chemistry B

, Volume 13, Issue 2, pp 349–353 | Cite as

Effect of Physical Factors during the Preparation of a Reaction Mixture in Turbulent Flows on the Rate of Butadiene Polymerization in the Presence of TiCl4-Al(i-C4H9)3 and Molecular Mass Characteristics of Butadiene Rubber

  • N. V. UlitinEmail author
  • K. A. Tereshchenko
  • D. A. Shiyan
  • A. S. Ziganshina
  • G. M. Ganiev
  • V. P. Zakharov
Chemical Physics of Polymer Materials


Butadiene polymerization was used as a model of diene polymerization in the presence of micro-heterogeneous Ziegler-Natta polycentric catalytic systems (TiCl4-Al(i-C4H9)3 catalytic system, toluene solvent, temperature 298 K). It was found that an increase in the rate of feeding of the reaction mixture into a tubular turbulent apparatus of diffuser-confuser design, the ratio of diffuser to confuser diameters, and diffuser opening angle led to a local increase in the kinetic energy and dissipation rate of turbulence; as a consequence, the most probable equivalent radius of the catalyst particles and the average molecular mass of the polymer decreased, while the polymerization rate increased. It was also found that a change in the section length to diffuser diameter ratio when the former or latter was constant and a change in the number of sections of the tubular turbulent apparatus from four to eight did not affect the polymerization rate and the molecular mass characteristics of the polymer.


butadiene rubber molecular mass characteristics of the polymer inverse kinetic problem polymerization rate Ziegler-Natta catalytic system tubular turbulent apparatus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ya. Deberdeev, Al. Al. Berlin, G. S. Dyakonov, V. P. Zakharov, and Yu. B. Monakov, Fast Chemical Reactions in Turbulent Flows: Theory and Practice (Smithers Rapra Technology, Shawbury, UK, 2013).Google Scholar
  2. 2.
    V. Z. Mingaleev, V. P. Zakharov, I. A. Ionova, et al., Polymer Science, Series B. 50 (11–12), 351 (2008).CrossRefGoogle Scholar
  3. 3.
    V. Z. Mingaleev, V. P. Zakharov, and Yu. B. Monakov, Russ. J. Appl. Chem. 80, 1130 (2007).CrossRefGoogle Scholar
  4. 4.
    K. A. Tereshchenko, A. S. Ziganshina, V. P. Zakharov, and N. V. Ulitin, Russ. J. Phys. Chem. B 11, 504 (2017).CrossRefGoogle Scholar
  5. 5.
    V. Z. Mingaleev, V. P. Zakharov, and Yu. B. Monakov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 51 (9), 63 (2008).Google Scholar
  6. 6.
    V. Z. Mingaleev, Kinet. Catal. 57, 52 (2016).CrossRefGoogle Scholar
  7. 7.
    V. Z. Mingaleev, V. P. Zakharov, P. V. Timofeev, et al., Vestn. Bashk. Univ. 14, 743 (2009).Google Scholar
  8. 8.
    ANSYS Fluent Theory Guide (ANSYS, Southpointe, 2011).Google Scholar
  9. 9.
    A. V. Klinov, A. G. Mukhametzyanova, and L. R. Minibaeva, Chem. Pet. Eng. 47, 815 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. V. Ulitin
    • 1
    Email author
  • K. A. Tereshchenko
    • 1
  • D. A. Shiyan
    • 1
  • A. S. Ziganshina
    • 1
  • G. M. Ganiev
    • 1
  • V. P. Zakharov
    • 2
  1. 1.Kazan National Research Technological UniversityKazanRussia
  2. 2.Bashkir State UniversityUfaRussia

Personalised recommendations