Russian Journal of Physical Chemistry B

, Volume 13, Issue 2, pp 231–244 | Cite as

Studying the Mechanism of the Low-Temperature Oxidation of Microsized Aluminum Powder by Water

  • N. S. ShaituraEmail author
  • O. O. Laricheva
  • M. N. Larichev
Kinetics and Mechanism of Chemical Reactions. Catalysis


The mechanism of the oxidation of disperse aluminum (powder of ASD-4 grade) by liquid water was studied including the use of different process activation methods (thermal, ultrasonic, and chemical in the presence of small CaO amounts). For this purpose, the complex study of the aluminum oxidation process was performed at its different stages by analyzing the kinetic dependences of the hydrogen formation rate and the reaction medium pH change and using the instrumental methods of scanning electron microscopy and X-ray diffraction analysis. It has been demonstrated that the shape of kinetic hydrogen release curves, the oxidation process completeness, and the structure of formed hydroxides are interrelated. An essential role is played by the mass transfer of formed solid oxidation products from the surface of particles to the crystallization nuclei of aluminum hydroxide and the localization of crystallization areas. This work is topical because of the broad interest in the use of metallic aluminum as an energy-accumulating substance.


disperse aluminum oxidation by water aluminum hydroxide hydrogen synthesis hydrogen energetics hydrogen generator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. N. Larichev (L. M. Nikolaevich), in Metal Nano-powders: Production, Characterization, and Energetic Applications, Ed. by A. Gromov and U. Teipel (Wiley-VCH, Weinheim, 2014), p. 163.
  2. 2.
    H. Z. Wang, D. Y. C. Leung, M. K. H. Leung, et al., Renewable Sustainable Energy Rev. 13, 845 (2009). CrossRefGoogle Scholar
  3. 3.
    E. I. Shkolnikov, A. Z. Zhuk, and M. S. Vlaskin, Renewable Sustainable Energy Rev. 15, 4611 (2009). CrossRefGoogle Scholar
  4. 4.
    M. N. Larichev, O. O. Laricheva, I. O. Leipunskii, et al., Izv. Akad. Nauk, Energ., No. 5, 125 (2007).Google Scholar
  5. 5.
    J. M. Bergthorson, Y. Yavor, J. Palecka, et al., Appl. Energy 186, 13 (2017). CrossRefGoogle Scholar
  6. 6.
    A. Z. Zhuk, M. S. Vlaskin, A. V. Grigorenko, et al., J. Ceram. Proc. Res. 17, 910 (2016).Google Scholar
  7. 7.
    S. A. Kislenko, M. S. Vlaskin, and A. Z. Zhuk, Solid State Ionics 293, 1 (2016).CrossRefGoogle Scholar
  8. 8.
    M. N. Larichev, N. S. Shaitura, and O. O. Laricheva, Russ. J. Phys. Chem. B 2, 757 (2008). CrossRefGoogle Scholar
  9. 9.
    M. N. Larichev, N. S. Shaitura, V. N. Kolokol'nikov, et al., Izv. Akad. Nauk, Energet, No. 2, 85 (2010).Google Scholar
  10. 10.
    N. S. Shaytura, M. N. Laritchev, O. O. Laritcheva, et al., Curr. Appl. Phys. 10 (Suppl. 2), S66 (2010). CrossRefGoogle Scholar
  11. 11.
    M. N. Larichev, N. S. Shaitura, V. N. Kolokol'nikov, et al., Perspekt. Mater., No. 9, 289 (2010).Google Scholar
  12. 12.
    M. N. Larichev, O. O. Laricheva, N. S. Shaitura, et al., Izv. Akad. Nauk, Energ., No. 3, 66 (2012).Google Scholar
  13. 13.
    A. A. Gromov, A. P. Il'in, U. Foerter-Barth, et al., Combust., Explos., Shock Waves 42, 177 (2006).CrossRefGoogle Scholar
  14. 14.
    M. N. Larichev, O. O. Laricheva, I. O. Leipunskii, et al., Khim. Fiz. 25 (10), 72 (2006).Google Scholar
  15. 15.
    Z. Y. Deng, J. M. F. Ferreira, Y. Tanaka, and J. Ye, J. Am. Ceram. Soc. 90, 1521 (2007). CrossRefGoogle Scholar
  16. 16.
    A. Fernandez, J. C. Sanchez-Lopez, A. Caballero, et al., J. Microsc. 191, 212 (1998). CrossRefGoogle Scholar
  17. 17.
    S. S. Razavi-Tousi and J. A. Szpunar, Electrochim. Acta 127, 95 (2014). CrossRefGoogle Scholar
  18. 18.
    A. S. Lozhkomoev, E. A. Glazkova, O. V. Bakina, et al., Nanotecnology 27, 205603 (2016). CrossRefGoogle Scholar
  19. 19.
    S. Kanehira, S. Kanamori, K. Nagashima, et al., J. Asian Ceram. Soc. 1, 296 (2013). CrossRefGoogle Scholar
  20. 20.
    B. C. Bunker, G. C. Nelson, K. R. Zavadil, et al., J. Phys. Chem. B 18, 4705 (2002). Scholar
  21. 21.
    E. I. Shkolnikov, N. S. Shaitura, and M. S. Vlaskin, J. Supercrit. Fluids 73, 10 (2013). CrossRefGoogle Scholar
  22. 22.
    P.A. Rebinder and E. D. Shchukin, Sov. Phys. Usp. 15, 533 (1972). CrossRefGoogle Scholar
  23. 23.
    J. Zang, M. Klasky, and B. C. Letellier, J. Nucl. Mater. 384, 175 (2009). CrossRefGoogle Scholar
  24. 24.
    W. H. Song, J. J. Du, Y. L. Xu, et al., J. Nucl. Mater. 246, 139 (1997). CrossRefGoogle Scholar
  25. 25.
    I. B. Ulanovskiy, Hydrogen Diffusion and Porosity Formation in Aluminium (MISIS, Moscow, 2015) [in Russian].Google Scholar
  26. 26.
    I. L. Khodakovskii, L. V. Katorcha, and N. S. Kuyunko, Geokhimiya, No. 11, 1606 (1980).Google Scholar
  27. 27.
    X. Feng, Z. Baojie, and L. Chery, J. Environ. Sci., No. 20, 907 (2008). Google Scholar
  28. 28.
    P. F. Rumyantsev, V. S. Khotimchenko, and V. Sh. Niku-shchenko, Calcium Aluminates Hydration (Nauka, Leningrad, 1974) [in Russian].Google Scholar
  29. 29.
    R. A. Lidin, et al., Chemical Properties of Inorganic Substances, 3rd ed. (Khimiya, Moscow, 2000) [in Russian].Google Scholar
  30. 30.
    M. D. Luque de Castro and F. Priego-Capete, Ultrason. Sonochem. 14, 717 (2007).CrossRefGoogle Scholar
  31. 31.
    V. S. Nalajala and V. S. Moholkar, Ultrason. Sonochem. 18, 345 (2011).CrossRefGoogle Scholar
  32. 32.
    M. A. Margulis, Ultrasonics 23, 157 (1985). CrossRefGoogle Scholar
  33. 33.
    B. Kaspzyk-Hordern, Adv. Colloid Interface Sci. 110, 19 (2004). CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. S. Shaitura
    • 1
    Email author
  • O. O. Laricheva
    • 1
  • M. N. Larichev
    • 1
  1. 1.Talroze Institute of Energy Problems of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations