Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 2, pp 245–252 | Cite as

Hydrocarbomethoxylation of Cyclohexene Catalyzed by Pd(OAc)2-PPh3-p-Toluenesulfonic Acid. Some Aspects of Reaction Kinetics and Thermodynamics of Ligand Exchange between Palladium Complexes

  • N. T. Sevost’yanovaEmail author
  • S. A. Batashev
  • A. S. Rodionova
Kinetics and Mechanism of Chemical Reactions. Catalysis
  • 1 Downloads

Abstract

The quantitative regularities of the effect of the concentration of promoting additive PPh3 on the rate of hydrocarbomethoxylation of cyclohexene for catalysis with Pd(OAc)2-PPh3-p-Toluenesulfonic acid system are established within the temperature range 368–383 K. It has been shown that in the studied temperature range the dependences of reaction rate on the PPh3 concentration pass through maxima. The results obtained are interpreted within a hydride mechanism of hydrocarbomethoxylation previously proposed. The values of some effective constants of the kinetic reaction equation are estimated. Using the temperature dependence of an effective rate constant, effective activation energy is estimated and, on its basis, the changes in enthalpy, entropy, and Gibbs energy in the ligand exchange reaction between the Pd(PPh3)4 and Pd(CO)2(PPh3)2, 2 complexes were estimated. It is established that this reaction is close to an equilibrium state at 373 K. Using previously obtained data for the temperatures of 363, 368, 373, 378, and 383 K, kinetic models of cyclohexene hydrocarbomethoxylation were developed, reflecting the cumulative effect of various participants in the reaction on its rate and working throughout the reaction.

Keywords

hydrocarbomethoxylation cyclohexene methyl cyclohexanecarboxylate palladium acetate(II) triphenylphosphine kinetic model ligand exchange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kh. A. Suerbaev, N. Zh. Kudaibergenov, and A. Vavasori, Russ. J. Gen. Chem. 87, 707 (2017).CrossRefGoogle Scholar
  2. 2.
    Kh. A. Suerbaev, N. Zh. Kudaibergenov, and A. K. Kurmansitova, Russ. J. Gen. Chem. 86, 2124 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Rosales, I. Pacheco, J. Medira, J. Fernandez, A. Gonzalez, et al., Catal. Lett. 144, 1717 (2014).  https://doi.org/10.1007/s10562-014-1335-0 CrossRefGoogle Scholar
  4. 4.
    M. Amézquita-Valencia, G. Achonduh, and H. Alper, Org. Chem. 80, 6419 (2015).  https://doi.org/10.1021/acs.joc.5b00851 CrossRefGoogle Scholar
  5. 5.
    M. Lemberg and G. Sadowski, J. Chem. Eng. Data 61, 3317 (2016).  https://doi.org/10.1021/acs.jced.6b00360 CrossRefGoogle Scholar
  6. 6.
    P. Pongrácz, A. Abu Seni, L. T. Mika, and L. Kollár, Mol. Catal. 438, 15 (2017).  https://doi.org/10.1016/j.mcat.2017.05.010 CrossRefGoogle Scholar
  7. 7.
    M. Queirolo, A. Vezzani, R. Mancuso, B. Gabriele, M. Costa, and N.D. Ca', J. Mol. Catal. A 398, 115 (2015).  https://doi.org/10.1016/j.molcata.2014.11.028 CrossRefGoogle Scholar
  8. 8.
    J. Liu, Q. Liu, R. Franke, R. Jackstell, and M. Beller, J. Am. Chem. Soc. 137, 8556 (2015).  https://doi.org/10.1021/jacs.5b04052 CrossRefGoogle Scholar
  9. 9.
    G. Kiss, Chem. Rev. 101, 3435 (2001).  https://doi.org/10.1021/cr010328q CrossRefGoogle Scholar
  10. 10.
    A. Vavasori, L. Toniolo, and G. Cavinato, J. Mol. Catal. A 191, 9 (2003).  https://doi.org/10.1016/S1381-1169(02)00358-8 CrossRefGoogle Scholar
  11. 11.
    V. A. Averyanov, N. T. Sevost'yanova, S. A. Batashev, A. A. Vorob'ev, and A. S. Rodionova, Russ. J. Phys. Chem. B 8, 140 (2014).  https://doi.org/10.7868/S0207401-14030030 CrossRefGoogle Scholar
  12. 12.
    I. E. Nifant'ev, N. T. Sevostyanova, V. A. Averyanov, et al., Appl. Catal., A 449, 145 (2012).  https://doi.org/10.1016/j.apcata.2012.09.020 CrossRefGoogle Scholar
  13. 13.
    A. Vavasori, G. Cavinato, and L. Toniolo, J. Mol. Catal. A 176, 11 (2001).  https://doi.org/10.1016/S1381-1169(01)00235-7 CrossRefGoogle Scholar
  14. 14.
    I. Nifant'ev, N. Sevostyanova, S. Batashev, A. Vorobiev, and A. Tavtorkin, React. Kinet. Mech. Catal 116, 63 (2015).  https://doi.org/10.1007/s11144-015-0888-2 CrossRefGoogle Scholar
  15. 15.
    I. E. Nifant'ev, S. A. Batashev, S. A. Toloraya, et al., J. Mol. Catal. A 350, 64 (2011).  https://doi.org/10.1016/j.molcata.2011.09.005 CrossRefGoogle Scholar
  16. 16.
    N. T. Sevost'yanova, S. A. Batashev, and A. S. Rodionova, Russ. J. Phys. Chem. B 10, 231 (2016).  https://doi.org/10.7868/S0207401-16030079 CrossRefGoogle Scholar
  17. 17.
    A. Seayad, S. Jayasree, K. Damodaran, L. Toniolo, and R. V. Chaudhari, J. Organomet. Chem. 601, 100 (2000).  https://doi.org/10.1016/S0022-328X(00)00041-3 CrossRefGoogle Scholar
  18. 18.
    N. T. Sevost'yanova, V. A. Averyanov, S. A. Batashev, A. S. Rodionova, and A. A. Vorob'ev, Russ. Chem. Bull. 63, 837 (2014).CrossRefGoogle Scholar
  19. 19.
    V. A. Aver'yanov, N. T. Sevost'yanova, and S. A. Batashev, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 55 (4), 111 (2012).Google Scholar
  20. 20.
    H. Yoshida, N. Sugita, K. Kudo, and Y. Takezaki, Bull. Chem. Soc. Jpn. 49, 2245 (1976).  https://doi.org/10.1246/bcsj.49.2245 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. T. Sevost’yanova
    • 1
    Email author
  • S. A. Batashev
    • 1
  • A. S. Rodionova
    • 1
  1. 1.Tula State Lev Tolstoy Pedagogical UniversityTulaRussia

Personalised recommendations