Russian Journal of Physical Chemistry B

, Volume 13, Issue 2, pp 313–327 | Cite as

Composite Ultrathin Fibers of Poly-3-Hydroxybutyrate and a Zinc Porphyrin: Structure and Properties

  • S. G. KarpovaEmail author
  • A. A. Ol’khov
  • P. M. Tyubaeva
  • N. G. Shilkina
  • A. A. Popov
  • A. L. Iordanskii
Physical Methods for Studying Chemical Reactions


Ultrathin fibers of poly-3-hydroxybutyrate (P3HB), a biodegradable polymer, modified by addition of a zinc porphyrin (content up to 5% with respect to P3HB), are prepared by electrospinning. The f ibers are investigated by differential scanning calorimetry, spin-probe electron paramagnetic resonance, scanning electron microscopy, and IR spectroscopy. We show that P3HB fibers modified with the porphyrin complex exhibit superior crystallinity and retardation of molecular motion in the amorphous regions of polymer. Subjecting the fibers to heat treatment at 140°C results in drastic increases in crystallinity and molecular motion in the amorphous regions of pure P3HB and P3HB, which contain 1% of the porphyrin complex. At a porphyrin content of 3%, a sharp drop in crystallinity of P3HB fibers is observed. The effects that aqueous thermal treatment at 70°C has on the structure and dynamics of our ultrathin fibers suggest that the processed samples become more crystalline. The molecular motion in the prepared fibers slows down as a result of relatively short (up to 100 min) ozone treatment, whereas the molecular motion intensifies at more advanced degrees of oxidation of the fibers.


stable radical correlation times ultrathin fibers poly-3-hydroxybutyrate electron paramagnetic resonance ozone treatment aqueous treatment thermal treatment binary amorphous phase crystal melting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



For evaluating the crystallinity of our samples by DSC, we used a DSC 204 F1 instrument (Netzsch, Germany) at the center of collective use “New Materials and Technologies,” Institute of Biochemical Physics, RAS.


  1. 1.
    A. B. Solov’eva, V. E. Belyaev, N. N. Glagolev, V. I. Volkov, V. N. Luzgina, G. V. Vstovskii, and S. F. Timashev, Russ. J. Phys. Chem. A 79, 635 (2005).Google Scholar
  2. 2.
    A. V. Chudinov, V. D. Rumyantseva, A. V. Lobanov, G. K. Chudinova, A. A. Stomakhin, and A. F. Mironov, Russ. J. Bioorg. Chem. 30, 89 (2004).CrossRefGoogle Scholar
  3. 3.
    L. Kong and G. R. Ziegler, Biomacromolecules 13, 2247 (2012).CrossRefGoogle Scholar
  4. 4.
    J. D. Schiffman and C. A. Schauer, Polym. Rev. 48, 1080 (2008). CrossRefGoogle Scholar
  5. 5.
    G. Xie, Y. Wang, X. Han, et al., Ind. Eng. Chem. Res. 55, 7116 (2016). CrossRefGoogle Scholar
  6. 6.
    A. Kulkarni, V. A. Bambole, and P. A. Mahanwar, Polym. Plas. Technol. Eng. 49, 427 (2010).CrossRefGoogle Scholar
  7. 7.
    Y. Wang, J. Pan, X. Han, et al., Biomaterials 29, 3393 (2008). CrossRefGoogle Scholar
  8. 8.
    J. Mergaert, A. Webb, C. Anderson, et al., Appl. Environ. Microbiol. 59, 3233 (1993).Google Scholar
  9. 9.
    X. J. Loh, S. H. Goh, and J. Li, Biomaterials 28, 4113 (2007).CrossRefGoogle Scholar
  10. 10.
    I. I. Zharkova, O. V. Staroverova, V. V. Voinova, et al., Biomed. Khim. 60 (5), 553 (2014).CrossRefGoogle Scholar
  11. 11.
    S. G. Karpova, A. A. Ol’khov, A. L. Iordanskii, S. M. Lomakin, N. S. Shilkina, and A. A. Popov, Russ. J. Phys. Chem. B 10, 687 (2016).CrossRefGoogle Scholar
  12. 12.
    Y. Hu, H. Sato, J. Zhang, et al., Polymer 49, 4204 (2008). CrossRefGoogle Scholar
  13. 13.
    A. A. Ol’khov, A. L. Iordanskii, O. V. Staroverova, et al., Khim. Volokna, No. 5, 8 (2015).Google Scholar
  14. 14.
    S. G. Karpova, A. A. Ol’khov, N. G. Shilkina, A. A. Popov, A. G. Filatova, E. L. Kucherenko, and A. L. Iordanskii, Polymer Sci., Ser. A 59, 58 (2017). CrossRefGoogle Scholar
  15. 15.
    A. L. Iordanskii, A. A. Ol’khov, S. G. Karpova, E. L. Kucherenko, R. Yu. Kosenko, S. Z. Rogovina, A. E. Chalykh, and A. A. Berlin, Polymer Sci., Ser. A 59, 352 (2017). CrossRefGoogle Scholar
  16. 16.
    S. G. Karpova, A. A. Ol’khov, A. V. Bakirov, S. N. Chvalun, N. G. Shilkina, and A. A. Popov, Russ. J. Phys. Chem. B 12, 142 (2018).CrossRefGoogle Scholar
  17. 17.
    A. D. Adler, F. R. Longo, J. D. Finarelli, et al., Org. Chem. 32, 476 (1967).CrossRefGoogle Scholar
  18. 18.
    Yu. N. Filatov, Electroforming of Fibrous Materials (EFF-Process) (Neft’ i Gaz, Moscow, 1997) [in Russian].Google Scholar
  19. 19.
    D. E. Budil, S. Lee, S. Saxena, and J. H. Freed, J. Magn. Res. A 120, 155 (1996).CrossRefGoogle Scholar
  20. 20.
    V. P. Timofeev, A. Yu. Misharin, and Ya. V. Tkachev, Biophysics 56, 407 (2011).CrossRefGoogle Scholar
  21. 21.
    A. L. Buchachenko and A. M. Vasserman, Stable Radicals (Khimiya, Moscow, 1973) [in Russian].Google Scholar
  22. 22.
    J. Opfermann, Rechentech.–Datenverarbeit. 23 (3), 26 (1985).Google Scholar
  23. 23.
    S. Vyazovkin, N. Koga, and C. V. Schick, Handbook of Thermal Analysis and Calorimetry, Applications to Polymers and Plastics (Elsevier, Amsterdam, Boston, London, 2002).Google Scholar
  24. 24.
    A. N. Ozerin, Cand. Sci. (Chem.) Dissertation (Karpov Inst. Phys. Chem., Moscow, 1977) [in Russian].Google Scholar
  25. 25.
    S. G. Karpova, A. L. Iordanskii, N. S. Klenina, A. A. Popov, S. M. Lomakin, N. G. Shilkina, and A. V. Rebrov, Russ. J. Phys. Chem. B 7, 225 (2013).CrossRefGoogle Scholar
  26. 26.
    S. G. Karpova, A. A. Popov, and G. E. Zaikov, Vysokomol. Soedin. 33, 931 (1991).Google Scholar
  27. 27.
    S. G. Karpova, A. L. Iordanskii, and A. A. Popov, N. G. Shilkina, S. M. Lomakin, M. A. Shcherbin, S. N. Chvalun, and A. A. Berlin, Russ. J. Phys. Chem. B 6, 72 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. G. Karpova
    • 1
    Email author
  • A. A. Ol’khov
    • 1
    • 2
    • 3
  • P. M. Tyubaeva
    • 1
    • 2
  • N. G. Shilkina
    • 3
  • A. A. Popov
    • 2
  • A. L. Iordanskii
    • 3
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Plekhanov Russian University of EconomicsMoscowRussia
  3. 3.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations