Russian Journal of Physical Chemistry B

, Volume 13, Issue 2, pp 273–279 | Cite as

Effect of an Additional Turbulence Source in a Flow Combustion Chamber on the Combustion Mode of Rich Methane-Oxygen Mixtures

  • N. N. BuravtsevEmail author
  • Yu. A. Kolbanovskii
  • I. V. Rossikhin
  • I. V. Bilera
Combustion, Explosion, and Shock Waves


In this paper, we experimentally study the effect of turbulent combustion modes on the conversion of initial components and main product yields in the noncatalytic partial gas-phase oxidation of natural gas in a flow reactor with a critical pressure gradient and an oxidizer excess ratio of α = 0.3. Where the design of the turbulizer (an additional turbulence source in the flow combustion chamber) is changed, two combustion modes leading to significantly different product distributions are found.


turbulent combustion natural gas methane partial oxidation synthesis gas flow reactor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Program for Basic Research of the Presidium of the Russian Academy of Sciences, no. 33 “Carbon Power Engineering: Chemical Aspects.”


  1. 1.
    D. J. Wilhelm, D. R. Simbeck, A. D. Karp, and R. L. Dickenson, Fuel Process. Technol. 71, 139 (2001).CrossRefGoogle Scholar
  2. 2.
    G. S. Fal'kevich, V. A. Topchii, A. P. Kakichev, et al., Katal. Prom-st', No. 3, 10 (2003).Google Scholar
  3. 3.
    H. Hiller, R. Reimert, F. Marschner, et al., Ullman's Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2007).Google Scholar
  4. 4.
    R. Bonneau, Neftegaz. Tekhnol., No. 9, 88 (2010).Google Scholar
  5. 5.
    V. A. Makhlin and Ya. R. Tsetseruk, Khim. Prom-st' Segodnya, No. 3, 6 (2010).Google Scholar
  6. 6.
    M. Corke, Oil Gas J. 96 (38), 71 (1998).Google Scholar
  7. 7.
    V. I. Savchenko, I. A. Makaryan, I. G. Fokin, et al., Neftepererab. Neftekhim., No. 8, 21 (2013).Google Scholar
  8. 8.
    V. S. Arutyunov, Oxidative Conversion of Natural Gas (KRASAND, Moscow, 2011) [in Russian].Google Scholar
  9. 9.
    V. S. Arutyunov, M. Yu. Sinev, V. M. Shmelev, and A. A. Kiryushin, Gazokhimiya, No. 1, 16 (2010).Google Scholar
  10. 10.
    V. S. Arutyunov, V. M. Shmelev, M. Yu. Sinev, and O. V. Shapovalova, Chem. Eng. J. 176–177, 291 (2011).CrossRefGoogle Scholar
  11. 11.
    Yu. A. Kolbanovskii, I. V. Bilera, I. V. Rossikhin, and K. Ya. Troshin, Ross. Khim. Zh. 54 (5), 62 (2010).Google Scholar
  12. 12.
    A. A. Borisov, V. P. Karpov, G. G. Politenkova, et al., in Combustion and Pollution: Environmental Impact, Ed. by G. D. Roy, S. M. Frolov, and A. M. Starik (Torus Press, Moscow, 2005), p. 87.Google Scholar
  13. 13.
    V. R. Grunval'd, Yu. L. Dolinskii, S. E. Piskunov, et al., RF Patent No. 2096313, Byull. Izobret., No. 32 (1997).Google Scholar
  14. 14.
    N. N. Buravtsev, Yu. A. Kolbanovskii, K. I. Pavlov, et al., RF Patent No. 2129462, Byull. Izobret., No. 12 (1999).Google Scholar
  15. 15.
    I. V. Bilera, Yu. A. Kolbanovskii, and I. V. Rossikhin, Gazokhimiya, Nos. 3–4, 41 (2011).Google Scholar
  16. 16.
    Yu. A. Kolbanovskii, I. V. Bilera, N. N. Buravtsev, and I. V. Rossikhin, NefteGazoKhim., No. 1, 28 (2015).Google Scholar
  17. 17.
    I. V. Bilera, Yu. A. Kolbanovskii, S. K. Petrov, et al., RF Patent No. 2320531, Byull. Izobret., No. 9 (2008).Google Scholar
  18. 18.
    I. V. Bilera, Yu. A. Kolbanovskii, I. V. Rossikhin, et al., RF Patent No. 2412109, Byull. Izobret., No. 5 (2011).Google Scholar
  19. 19.
    J. Warnatz, U. Maas, and R. W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Springer, Berlin, 2006; Fizmatlit, Moscow, 2003).Google Scholar
  20. 20.
    B. Lewis and G. Elbe, Combustion, Flames, and Explosions of Gases (Academic, New York, 1987; Mir, Moscow, 1968).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. N. Buravtsev
    • 1
    Email author
  • Yu. A. Kolbanovskii
    • 1
  • I. V. Rossikhin
    • 1
  • I. V. Bilera
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations