Russian Journal of Physical Chemistry B

, Volume 13, Issue 2, pp 339–344 | Cite as

Intra- and Interphase Crosslinking in Composites of Nitrile-Butadiene Rubber with Polyvinyl Chloride and Their Ozone Resistance

  • N. M. LivanovaEmail author
  • A. A. Popov
Chemical Physics of Polymer Materials


The ratio of the number of intra- and interphase crosslinks in the mixtures of nitrile-butadiene rubber with different content of acrylonitrile units and polyvinyl chloride was estimated from the contribution of each phase to the tensile modulus. It is shown that the number of chemical bonds between the components has a decisive effect on ozone-protective effect by a thermoplastic. The degree of crosslinking of rubber does not matter.


compatibility phase boundaries phase crosslinking ozone resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Shvarts, and B. N. Dinzburg, Combination of Rubbers with Plastics, and Synthetic Resins (Khimiya, Moscow, 1972) [in Russian].Google Scholar
  2. 2.
    E. Ya. Devirts, Nitrile Butadiene Rubbers, Properties and Application (TsNIITeneftekhim, Moscow, 1972) [in Russian].Google Scholar
  3. 3.
    Sh. M. Mamedov, F. I. Yadreev, and E. M. Rivin, Nitrile Butadiene Rubbers and Rubbers Based on them (ELM, Baku, 1991) [in Russian].Google Scholar
  4. 4.
    A. H. Jorgensen and D. Y. Fraser, Rubber. World 157 (6), 57 (1968).Google Scholar
  5. 5.
    B. E. Krisyuk, A. A. Popov, N. M. Livanova, and M. P. Farmakovskaya, Polymer Sci., Ser. A 41, 94 (1999).Google Scholar
  6. 6.
    N. M. Livanova, A. A. Popov, S. G. Karpova, T. A. Bogaevskaya, and M. P. Farmakovskaya, Polymer Sci., Ser. A 42, 661 (2000).Google Scholar
  7. 7.
    N. M. Livanova, Polymer Sci., Ser. A 48, 821 (2006).CrossRefGoogle Scholar
  8. 8.
    N. M. Livanova, A. A. Popov, and G. E. Zaikov, J. Characteriz. Developm. Novel Mater. 7 (1), 99 (2015).Google Scholar
  9. 9.
    S. Morrel, Rubber. J 154 (12), 19 (1972); Rubber. J. 154 (12), 56 (1972).Google Scholar
  10. 10.
    A. A. Berlin, V. I. Ganina, V. A. Kargin, A. G. Kronman, and D. M. Yanovskii, Vysokomol. Soedin. 6, 1684 (1964).Google Scholar
  11. 11.
    A. A. Berlin, A. G. Kronman, D. M. Yanovskii, and V. A. Kargin, Vysokomol. Soedin. 6, 1688 (1964).Google Scholar
  12. 12.
    A. G. Kronman and V. A. Kargin, Vysokomol. Soedin. 8, 1703 (1966).Google Scholar
  13. 13.
    V. M. Ul'yanov, E. P. Rybkin, and A. D. Gutkovich, Polyvinyl Chloride (Khimiya, Moscow, 1992) [in Russian].Google Scholar
  14. 14.
    V. A. Kargin and T. I. Sogolova, Zh. Fiz. Khim. 31, 1328 (1957).Google Scholar
  15. 15.
    L. Boltzmann, Wiener Ber. 70, 275 (1874).Google Scholar
  16. 16.
    L. Boltzmann, Pogg. Ann. Phys. Chem. 7, 624 (1876).Google Scholar
  17. 17.
    V. Volterra, Theory of Functionals, and of Integral, and Integro-Differential Equations (Blackie, London, Glasgow, 1930).Google Scholar
  18. 18.
    A. A. Askadskii, Polymer Deformation (Khimiya, Moscow, 1973) [in Russian].Google Scholar
  19. 19.
    I. E. Ashton, J. C. Halpin, and P. H. Petit, Primer on Composite Materials Analysis (Technomic Publ., Stampford, CN, 1969), Chap. 5.Google Scholar
  20. 20.
    J. Halpin and J. L. Kardos, Polym. Eng. Sci. 16, 344 (1976).CrossRefGoogle Scholar
  21. 21.
    A. A. Askadskii, The Principle of Additivity in the Physicochemistry of Polymers (Znanie, Moscow, 1987) [in Russian].Google Scholar
  22. 22.
    G. M. Bartenev and A. G. Barteneva, Structure and Relaxation Properties of Polymers (Khimiya, Moscow, 1992) [in Russian].Google Scholar
  23. 23.
    L. Nielsen, Mechanical Properties of Polymers and Composites (Marcel Dekker, New York, 1974).Google Scholar
  24. 24.
    S. K. De and A. K. Bhowmick, Thermoplastic Elastomers from Rubber-Plastic Blends (Ellis Horwood, London, 1990), p. 102.Google Scholar
  25. 25.
    D. Paul and K. Bucknell, Polymer Blends (Wiley, New York, 2000; NOT, St. Petersburg, 2009).Google Scholar
  26. 26.
    N. M. Livanova, S. G. Karpova, and A. A. Popov, Polymer Sci., Ser. A 53, 1128 (2011).CrossRefGoogle Scholar
  27. 27.
    Yu. S. Zuev, Destruction of Polymers under the Influence of Aggressive Media (Khimiya, Moscow, 1972) [in Russian].Google Scholar
  28. 28.
    G. M. Bartenev, A. K. Mikitaev, and R. B. Tkhakakhov, Dokl. Akad. Nauk 282, 1406 (1985).Google Scholar
  29. 29.
    Yu. G. Oganesov, V. N. Kuleznev, and S. S. Voyutskii, Vysokomol. Soedin., Ser. B 12, 691 (1970).Google Scholar
  30. 30.
    J. A. Manson and L. H. Sperling, Polymer Blends and Composites (Plenum, New York, 1976; Khimiya, Moscow, 1979).CrossRefGoogle Scholar
  31. 31.
    X. Zheng, H. Pu Henry, Ya. Yang, and Ju. Zin, J. Polym. Sci., Part C 27, 223 (1989).Google Scholar
  32. 32.
    R. B. Tkhakakhov, E. M. Zhazaeva, L. M. Gukepsheva, E. R. Tkhakakhov, and B. S. Karamurzov, Plast. Massy, No. 8, 23 (2006).Google Scholar
  33. 33.
    E. M. Zhazaeva, R. B. Tkhakakhov, and M. M. Oshkhunov, Plast. Massy, No. 9, 54 (2013).Google Scholar
  34. 34.
    D. Colombini, G. Merle, J. J. Martinez-Vega, E. Girard-Reydet, J. P. Pascault, et al., Polymer 40, 935 (1998).CrossRefGoogle Scholar
  35. 35.
    J. K. Deporter, D. G. Baird, and G. L. Wilkes, Polym. Rev. 33, 1 (1993).Google Scholar
  36. 36.
    D. S. Kaplan, J. Appl. Polym. Sci. 20, 2615 (1976).CrossRefGoogle Scholar
  37. 37.
    J. Dechant, R. Danz, W. Kimmer, and R. Schmolke, Ultrarotspektroskopische Untersuchungen an Polymeren (Akademie, Berlin, 1972).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Plekhanov Russian University of EconomicsMoscowRussia

Personalised recommendations