Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 112–118 | Cite as

Reaction Mechanism Study of Chemical Transformations in Combustion of MoO3/TiO2/Al/Si Mixtures of Termite Type

  • V. A. GorshkovEmail author
  • P. A. Miloserdov
  • N. V. Sachkova
Combustion, Explosion, and Shock Waves

Abstract

In this paper, we studied the reaction mechanism of chemical transformations of the initial components in the combustion wave of MoO3/TiO2/Al/Si mixtures of the thermite type in the synthesis of molded molybdenum disilicide (MoSi2) and binary molybdenum titanium silicates ((MoTi)Si2). Syntheses were carried out in a high-temperature synthesis reactor at an initial argon pressure of P0 = 5 MPa. The effect of the ratio of initial reagents and geometric factors on the laws of synthesis of these materials was experimentally studied. The intervals of the component ratios, at which molybdenum and titanium silicides can be synthesized with specified compositions, are determined. We carried out experiments on stopping the combustion front. The chemical transformation of the components of the initial MoO3/TiO2/Al/Si mixtures in the combustion wave is shown to proceed in stages, and chemical reactions can be considered as chemically conjugated processes. The obtained results provide the scientific basis for the creation of promising molded silicide ceramics with high performance properties.

Keywords

molded silicide ceramics liquid-phase combustion chemical transformation combustion rate and temperature chemically conjugated processes phase separation microstructure reaction cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Zhang, P. Chen, J. Yan, and S. Tang, Int. J. Refract. Met. Hard Mater. 22, 271 (2004).CrossRefGoogle Scholar
  2. 2.
    S. P. Tantry, S. K. Ramasesha, J.-S. Lee, T. Yano, U. Ramamurty, J. Am. Ceram. Soc. 87, 626 (2004).CrossRefGoogle Scholar
  3. 3.
    H. Qiang, M. Chaoli, Z. Xinqing, and X. Huibin, Chin. J. Aeronaut. 21, 448 (2008).CrossRefGoogle Scholar
  4. 4.
    K. Matsuura, T. Ohmi, M. Kudoh, and T. Hasegawa, Metall. Mater. Trans., A 31, 747 (2000).CrossRefGoogle Scholar
  5. 5.
    D. D. Titov, Yu. F. Kargin, A. S. Lysenkov, N. A. Popova, and V. A. Gorshkov, Materialovedenie, No. 7, 45 (2012).Google Scholar
  6. 6.
    A. G. Merzhanov, SHS on the Pathway to Industrialization (ISMAN, Chernogolovka, 2001).Google Scholar
  7. 7.
    A. G. Merzhanov, J. Mater. Chem. 14, 1779 (2004).CrossRefGoogle Scholar
  8. 8.
    E. A. Levashov, A. S. Mukasyan, A. S. Rogachev, and D. V. Shtansky, Int. Mater. Rev. 62, 203 (2017).CrossRefGoogle Scholar
  9. 9.
    V. I. Yukhvid, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 5, 62 (2006).Google Scholar
  10. 10.
    V. I. Yukhvid, in Proceedings of the Conference on SHS of Materials (Taylor and Francis, New York, 2002), p. 238.Google Scholar
  11. 11.
    A. E. Levashov, A. S. Rogachev, V. I. Yukhvid, and I. P. Borovinskaya, Physico-Chemical and Technological Principles of Self-Propagating High-Temperature Synthesis (BINOM, Moscow, 1999) [in Russian].Google Scholar
  12. 12.
    V. A. Gorshkov, A. A. Samboruk, and V. I. Yukhvid, Russ. J. Phys. Chem. B 3, 798 (2009).CrossRefGoogle Scholar
  13. 13.
    V. A. Gorshkov, V. I. Yukhvid, P. A. Miloserdov, and N. V. Sachkova, Inorg. Mater. 47, 375 (2011).CrossRefGoogle Scholar
  14. 14.
    V. A. Gorshkov, V. I. Yukhvid, P. A. Miloserdov, N. V. Sachkova, and D. Yu. Kovalev, Int. J. Self-Propag. High-Temp Synth. 20, 100 (2011).CrossRefGoogle Scholar
  15. 15.
    P. A. Miloserdov, V. A. Gorshkov, V. I. Yukhvid, and N. V. Sachkova, Perspekt. Mater., No. 6, 69 (2013).Google Scholar
  16. 16.
    V. A. Gorshkov, P. A. Miloserdov, N. V. Sachkova, and I. D. Kovalev, Int. J. Self-Propag. High-Temp Synth. 23, 36 (2014).CrossRefGoogle Scholar
  17. 17.
    A. Shiryaev, Int. J. Self-Propag. High-Temp Synth. 4, 351 (1995).Google Scholar
  18. 18.
    A. I. Volkov, and I. M. Zharskii, Great Chemical Handbook (Sovremennaya Shkola, Minsk, 2005) [in Russian].Google Scholar
  19. 19.
    Chemical Encyclopedy, Ed. by I. L. Knunyants (Sovetskaya Entsiklopediya, Moscow, 1992), Vol. 3 [in Russian].Google Scholar
  20. 20.
    R. Ripan and I. Chetyanu, Inorganic Chemistry (Mir, Moscow, 1971), Vol. 2 [in Russian].Google Scholar
  21. 21.
    A. G. Merzhanov, Dokl. Phys. Chem. 434, 159 (2010).CrossRefGoogle Scholar
  22. 22.
    A. G. Merzhanov, Vestn. Akad. Nauk SSSR, No. 8, 10 (1979).Google Scholar
  23. 23.
    N. P. Lyakishev, Yu. L. Pliner, G. F. Ignatenko, and S. I. Lappo, Aluminothermy (Metallurgiya, Moscow, 1978) [in Russian].Google Scholar
  24. 24.
    V. I. Yukhvid, Self-Propagating High-Temperature Synthesis: Theory and Practice (Territoriya, Chernogolovka, 2001), p. 252 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Gorshkov
    • 1
    Email author
  • P. A. Miloserdov
    • 1
  • N. V. Sachkova
    • 1
  1. 1.Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations