Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 1–8 | Cite as

Theoretical Study of the Effect of Simultaneous Doping with Silicon, on Structure and Electronic Properties of Adamantane

  • Forough Kalantari FotoohEmail author
  • Mehdi Atashparvar
Structure of Chemical Compounds Spectroscopy
  • 4 Downloads

Abstract

In this paper, structural and electronic properties of adamantane (C10H16) and its Si-doped derivatives were calculated using density functional theory. In order to find diamondoids with specific properties, one to ten carbon atoms of adamantane were substituted with silicon atoms and the changes in structural and electronic properties of adamantane after substituting were investigated. HOMO-LUMO energies of 1–10 Si-doped adamantane and their gaps were calculated and the parameters that affect on the energy gaps of Si-doped structures were introduced. Among the doped molecules, 4-Si doped adamantane with high symmetry structure shows distinct properties. Adiabatic electron affinity and ionization potentials were calculated using Gibbs free energies of cationic and anionic forms of all structures. The results show that the electron affinity of adamantane is negative and reduces to positive values by simultaneous C/Si doping in 7–10-sila-doped adamantane. These results show the vacuum level transfer from above to below the conduction band. NBO charge analyses were also applied for describing the electron affinity and Ionization potential results.

Keywords

diamondoid Si-doped adamantane adiabatic electron affinity DFT calculation energy gap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Pozuelo, Y. W. Chang, and J. M. Yang, Mater. Sci. Eng. 633, 200 (2015).CrossRefGoogle Scholar
  2. 2.
    G. A. Mansoori, Advances in Chemical Physics (Wiley, Chichester, 2008), p. 207.CrossRefGoogle Scholar
  3. 3.
    G. A. Mansoori, P. L. B. de Araujo, and E. S. de Araujo, Diamondoid Molecules with Applications in Biomedicine, Materials Science, Nanotechnology and Petroleum Science (World Scientific, Haekensaek, NJ, 2012).CrossRefGoogle Scholar
  4. 4.
    G. P. Zhang, T. F. George, L. Assoufid, et al., Phys. Rev. B 75, 0354131 (2007).Google Scholar
  5. 5.
    G. C. MeIntosh, M. Yoon, S. Berber, et al., Phys. Rev. B 70, 045401 (2004).CrossRefGoogle Scholar
  6. 6.
    N. D. Drummond, A. J. Williamson, R. J. Needs, et al., Phys. Rev. Lett. 95, 096801 (2005).CrossRefGoogle Scholar
  7. 7.
    Q.-S. Li, X.-J. Feng, Y. Xie, et al., J. Phys. Chem. A 109, 1454 (2005).CrossRefGoogle Scholar
  8. 8.
    F. Marsusi, K. Mirabbaszadeh, and G. Ali Mansoori, Phys. E (Amsterdam, Neth.) 41, 1151 (2009).CrossRefGoogle Scholar
  9. 9.
    A. A. Fokin, T. S. Zhuk, A. E. Pashenko, et al., Org. Lett. 11, 3068 (2009).CrossRefGoogle Scholar
  10. 10.
    M. Hamadanian, B. Khoshnevisan, and F. K. Fotooh, J. Mol. Struet. 961, 48 (2010).CrossRefGoogle Scholar
  11. 11.
    Y. Xue and G. A. Mansoori, Int. J. Mol. Sci. 11, 288 (2010).CrossRefGoogle Scholar
  12. 12.
    J. C. Gareia, J. F. Justo, W. V. M. Machado, et al., Diamond Relat. Mater. 19, 837 (2010).CrossRefGoogle Scholar
  13. 13.
    T. Rander, M. Staiger, R. Richter, et al., J. Chem. Phys. 138, 024310 (2013).CrossRefGoogle Scholar
  14. 14.
    F. Maria, Nanotechnology 25, 365601 (2014).CrossRefGoogle Scholar
  15. 15.
    A. Bibek and F. Maria, Nanotechnology 26, 035701 (2015).CrossRefGoogle Scholar
  16. 16.
    J. Fischer, J. Baumgartner, and C. Marschner, Science (Washington, DC, U. S.) 310, 825 (2005).CrossRefGoogle Scholar
  17. 17.
    F. Pichierri, Chem. Phys. Lett. 421, 319 (2006).CrossRefGoogle Scholar
  18. 18.
    F. Iori, S. Ossieini, Phys. E (Amsterdam, Neth.) 41, 939 (2009).CrossRefGoogle Scholar
  19. 19.
    W. D. S. A. Miranda, S. S. Coutinho, M. S. Tavares, et al., J. Mol. Struet. 1122, 299 (2016).CrossRefGoogle Scholar
  20. 20.
    A. D. Beeke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  21. 21.
    M. J. Frisch, G. W. Trueks, H. B. Schlegel, et al., Gaussian 03, Revision A.1 (Gaussian Inc., Wallingford, CT, USA, 2003).Google Scholar
  22. 22.
    R. Dennington, T. Keith, and J. Millam, GaussView, Version 5 Semichem Inc., Shawnee Mission, KS, 2009).Google Scholar
  23. 23.
    S. P. Kampermann, T. M. Sabine, B. M. Craven, et al., Acta Crystallogr. A 51, 489 (1995).CrossRefGoogle Scholar
  24. 24.
    W. Nowacki and K. W. Hedberg, J. Am. Chem. Soe. 70, 1497 (1948).CrossRefGoogle Scholar
  25. 25.
    V. Vijayakumar, B. G. Alka, B. K. Godwal, et al., J. Phys.: Condens. Matter 13, 1961 (2001).Google Scholar
  26. 26.
    A. Rastkar, J. Azamat, J. J. Sardroodi, et al., J. Comput. Theor. Nanosei. 12, 1882 (2015).CrossRefGoogle Scholar
  27. 27.
    K. Lenzke, L. Landt, M. Hoener, et al., J. Chem. Phys. 127, 084320 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Yazd branchIslamic Azad UniversityYazdIran

Personalised recommendations