Advertisement

Russian Journal of Physical Chemistry B

, Volume 13, Issue 1, pp 49–61 | Cite as

Synthesis, Characterization, Computation of Global Reactivity Descriptors and Antiproliferative Activity of N-(4-nitrophenyl)Acrylamide

  • Emine TanışEmail author
  • Nevin Çankaya
  • Serap Yalçın
Kinetics and Mechanism of Chemical Reactions Catalysis
  • 3 Downloads

Abstract

In this article N-(4-nitrophenyl)acrylamide has been synthesized and characterized both experimentally and theoretically. The synthesized monomer was characterized experimentally by Fourier Transform Infrared, Nuclear Magnetic Resonance spectroscopic techniques and theoretically by Density Functional Theory and Time-Dependent Density Functional Theory methods at Coulomb Attenuated Method level. To investigate the natural toxicity and reactivity of the title molecule optimized at the Density Functional Theory/Coulomb Attenuated Method- Becke three-parameter Lee-Yang-Parr level, the chemical reactivity descriptors were calculated based on the rotational barriers. Using the Parr formula, the interaction between N-(4-nitrophenyl)acrylamide molecule and nucleic acid bases (adenine, thymine, cytosine, uracil and guanine) phenylalanine and histidine an Aryl Hydrocarbon hydroxylase receptors were investigated. Charge transfer that is important in the formation of chemically bonded adducts causing cancer has been calculated quantitatively. In addition, in vitro cytotoxicity of N-(4-nitrophenyl)acrylamide on HeLa cell lines has been studied. It has been found that the half maximal inhibitory concentration value of N-(4-nitrophenyl)acrylamide is 1 mM in HeLa cells. Our results show that N-(4-nitrophenyl)acrylamide, an acrylamide-based molecule that is accepted as toxic by the World Health Organization, has low toxicity on cancer cells by experimental study and, in theory, it has low toxicity according to calculations of reactivity descriptors, therefore can be used for biomedical research.

Keywords

N-(4-nitrophenyl)acrylamide (4NPA) density functional theory time-dependent approach HeLa cell line antiproliferative activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Baskaya, Y. Keskin, A. Karagoz, and H. I. Koc, Prevent. Med. Bull. 8, 2 (2009).Google Scholar
  2. 2.
    E. Dybing and T. Sanner, Toxicol. Sci. 75, 1 (2003).CrossRefGoogle Scholar
  3. 3.
  4. 4.
  5. 5.
    A. Becalski, B. P. Lau, D. Lewis, and S. W. Seaman, in Proceedings of the AOAC Annual Meeting and Exposition, Los Angeles, CA, 2002, p. 22.Google Scholar
  6. 6.
    P. Rydberg, S. Ericson, E. Tareke, et al., J. Agric. Food Chem. 5, 7012 (2003).CrossRefGoogle Scholar
  7. 7.
    R. H. Stadler, I. Blank, N. Varga, et al., Nature (London, U.K.) 419, 449 (2002).CrossRefGoogle Scholar
  8. 8.
    C. Ruden, Food Chem. Toxicol. 42, 3 (2004).CrossRefGoogle Scholar
  9. 9.
  10. 10.
    K. M. Marstokk, H. Møllendal, and S. Samdal, J. Mol. Struct. 524, 1 (2000).CrossRefGoogle Scholar
  11. 11.
    A. K. Chandra and M. T. Nguyen, J. Phys. Chem. A 102, 30 (1998).Google Scholar
  12. 12.
    S. Arulmozhiraja, T. Fujii, and G. Sato, Mol. Phys. 100, 4 (2002).CrossRefGoogle Scholar
  13. 13.
    S. Arulmozhiraja, P. C. Selvin, and T. Fujii, J. Phys. Chem. A 106, 9 (2002).Google Scholar
  14. 14.
    M. Nendza, J. Volmer, and W. Klein, Practical Applications of Quantitative Structure-Activity Relationships (QSAR) in Environmental Chemistry and Toxicology (Kluwer, Dordrecht, Netherlands, 1990).Google Scholar
  15. 15.
    T. W. Schultz, Toxicol. Methods 7, 289 (1997).CrossRefGoogle Scholar
  16. 16.
    S. D. Dimitrov, O. G. Mekenyan, and T. W. Schultz, Bull. Environ. Contam. Toxicol. 65, 399 (2000).CrossRefGoogle Scholar
  17. 17.
    P. K. Chattaraj, S. Nath, and B. Maiti, Computational Medicinal Chemistry for Drug Discovery (Marcel Dekker, New York, 2003).Google Scholar
  18. 18.
    R. Parthasarathi, J. Padmanabhan, V. Subramanian, B. Maiti, and P. K. Chattaraj, J. Phys. Chem. A 107, 13046 (2003).CrossRefGoogle Scholar
  19. 19.
    R. Parthasarathi, J. Padmanabhan, V. Subramanian, B. Maiti, and P. K. Chattaraj, Curr. Sci. 86, 535 (2004).Google Scholar
  20. 20.
    J. Padmanabhan, R. Parthasarathi, U. Sarkar, V. Sub-ramanian, and P. K. Chattaraj, Chem. Phys. Lett. 383, 1 (2004).CrossRefGoogle Scholar
  21. 21.
    R. K. Roy, F. de Proft, and P. Geerlings, J. Phys. Chem. A 102, 7035 (1998).CrossRefGoogle Scholar
  22. 22.
    F. Mendez, J. Tamariz, and P. Geerlings, J. Phys. Chem. A 102, 6292 (1998).CrossRefGoogle Scholar
  23. 23.
    W. Langenaeker, F. de Proft and P. Geerlings, J. Phys. Chem. A 102, 5944 (1998).CrossRefGoogle Scholar
  24. 24.
    R. K. Roy, S. Krishnamurthy, P. Geerlings, and S. Pal, J. Phys. Chem. A 102, 3746 (1998).CrossRefGoogle Scholar
  25. 25.
    A. Chatterjee, T. Iwasaki, and T. Ebina, J. Phys. Chem. A 103, 2489 (1999).CrossRefGoogle Scholar
  26. 26.
    P. Perez, A. Toro-Labbe, and R. Contreras, J. Phys. Chem. A 103, 11246 (1999).CrossRefGoogle Scholar
  27. 27.
    P. Jaque and A. Toro-Labbe, J. Phys. Chem. A 104, 995 (2000).CrossRefGoogle Scholar
  28. 28.
    P. Perez, A. Toro-Labbe, and R. Contreras, J. Phys. Chem. A 104, 5882 (2000).CrossRefGoogle Scholar
  29. 29.
    S. Gutierrez-Oliva, P. Jaque, and A. Toro-Labbe, J. Phys. Chem. A 104, 8955 (2000).CrossRefGoogle Scholar
  30. 30.
    G. Schuurmann, Environ. Toxicol. Chem. 9, 417 (1990).CrossRefGoogle Scholar
  31. 31.
    S. Kobayashi, K. Sameshima, Y. Ishii, and A. Tanaka, Chem. Pharm. Bull. 43, 1780 (1995).CrossRefGoogle Scholar
  32. 32.
    R. G. Parr and W. Yang, Ann. Rev. Phys. Chem. 46, 701 (1995).CrossRefGoogle Scholar
  33. 33.
    H. Chermette, J. Comput. Chem. 20, 129 (1999).CrossRefGoogle Scholar
  34. 34.
    R. Parthasarathi, J. Padmanabhan, U. Sarkar, et al., El. J. Mol. Des. 2, 798 (2003).Google Scholar
  35. 35.
    D. R. Roy, R. Parthasarathi, B. Maiti, V. Subramanian, and P. K. Chattaraj, Bioorg. Med. Chem. 13, 3405 (2005).CrossRefGoogle Scholar
  36. 36.
    N. Cankaya and M. M Temuz, Cellulose Chem. Technol. 46, 9 (2012).Google Scholar
  37. 37.
    M. J. Frisch et al., Gaussian 09, Revision A. 1 (Gaussian, Inc., Wallingford, CT, 2009).Google Scholar
  38. 38.
    Y. Tawada, T. Tsuneda, S. Yanagisawa, et al., J. Chem. Phys. 120, 8425 (2004).CrossRefGoogle Scholar
  39. 39.
    T. Yanai, P. D. Tew, and C. N. Handy, Chem. Phys. Lett. 393, 51 (2004).CrossRefGoogle Scholar
  40. 40.
    M. J. G. Peach, E. I. Tellgren, P. Salek, et al., J. Phys. Chem. A 111, 11930 (2007).CrossRefGoogle Scholar
  41. 41.
    A. L. Peter, V. M. Kurt, and P. L. Hans, J. Chem. Phys. 130, 194114 (2009).CrossRefGoogle Scholar
  42. 42.
    K. Fukui, Science (Washington, DC, U. S.) 218, 747 (1987).CrossRefGoogle Scholar
  43. 43.
    R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989).Google Scholar
  44. 44.
    R. G. Pearson, Chemical Hardness—Applications from Molecules to Solids (VCH-Wiley, Weinheim, 1997).Google Scholar
  45. 45.
    R. P. Iczkowski and J. L. Margrave, J. Am. Chem. Soc. 83, 3547 (1961).CrossRefGoogle Scholar
  46. 46.
    R. G. Parr, L. V. Szentpaly, and S. J. Liu, Am. Chem. Soc. 121, 1922 (1999).CrossRefGoogle Scholar
  47. 47.
    R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).CrossRefGoogle Scholar
  48. 48.
    J. J. Nie and D. J. Xu, Chin. Struct. J. Chem. 21, 165 (2002).Google Scholar
  49. 49.
    D. C. Young, Computational Chemistry (Wiley, New York, 2001).CrossRefGoogle Scholar
  50. 50.
    M. Barthes, G. de Nunzio, and M. Ribet, Synth. Met. 76, 1, (1996).CrossRefGoogle Scholar
  51. 51.
    N. P. G. Roeges, A Guide to the Complete Interpretation of IR Spectra of Organic Compounds (Wiley, New York, 1994).Google Scholar
  52. 52.
    A. E. Aliev, D. Courtier-Murias, and S. Zhou, J. Mol. Struct.: THEOCHEM 893, 1 (2009).CrossRefGoogle Scholar
  53. 53.
    R. G. Parr and W. Yang, J. Am. Chem. Soc. 106, 4049 (1984).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Health Services Vocational SchoolKırşehir Ahi Evran UniversityKırşehirTurkey
  2. 2.Department of ChemistryUsak UniversityUşakTurkey
  3. 3.Department of Molecular Biology and GeneticKırşehir Ahi Evran UniversityKırşehirTurkey

Personalised recommendations