Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 158–164 | Cite as

Hybrid Biodegradable Nanocomposites Based on a Biopolyester Matrix and Magnetic Iron Oxide Nanoparticles: Structural, Magnetic, and Electronic Characteristics

  • V. E. Prusakov
  • Yu. V. Maksimov
  • K. N. Nishchev
  • A. V. Golub’ev
  • V. I. Beglov
  • Yu. F. Krupyanskii
  • A. V. Bychkova
  • A. L. Iordanskii
  • A. A. Berlin
Chemical Physics of Nanomaterials
  • 3 Downloads

Abstract

The structural, electronic, and magnetic properties of iron oxide nanoparticles encapsulated in hybrid biodegradable therapeutic systems based on poly-3-hydroxybutyrate and chitosan are comprehensively studied using Mössbauer spectroscopy, X-ray diffraction, small-angle X-ray scattering, and macroscopic magnetization measurements. It is shown that iron oxide in concentrations of 4 and 8 wt % in the polymer matrix of magnetically isotropic and magnetoanisotropic systems exists in the form of nanosized (d ≈ 7–8 nm) superparamagnetic clusters. Iron oxide clusters have the structure of a nonstoichiometric inverse spinel, intermediate between polymorphous modifications of Fe3O4 and γ-Fe2O3.

Keywords

hybrid magnetic composites biodegradable polymers iron oxides magnetic nanoparticles magnetic properties X-ray diffraction Mössbauer spectroscopy small-angle X-ray scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Taupitz, S. Wagner, J. Schnorr, et al., Invest. Radiol. 39, 394 (2004).CrossRefGoogle Scholar
  2. 2.
    C. Alexiou, R. J. Schmid, R. Jurgons, et al., Eur. Biophys. J. 35, 446 (2006).CrossRefGoogle Scholar
  3. 3.
    N. L. Shimanovskii, V. Yu. Naumenko, A. G. Akopdzhanov, et al., Nanotekhnika, No. 4, 20 (2009).Google Scholar
  4. 4.
    I. P. Suzdalev, Yu. V. Maksimov, V. E. Prusakov, S. V. Novichikhin, M. I. Ivanovskaya, D. A. Kotikov, V. V. Pan’kov, and Yu. Lyubina, Nanotechnol. Russ. 3, 95 (2008).CrossRefGoogle Scholar
  5. 5.
    A. V. Bychkova, O. N. Sorokina, M. A. Rosenfeld, and A. L. Kovarski, Russ. Chem. Rev. 81, 1026 (2012).CrossRefGoogle Scholar
  6. 6.
    F. M. Kievit and M. Zhang, Acc. Chem. Res. 44, 853 (2011).CrossRefGoogle Scholar
  7. 7.
    L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, Chem. Rev. 112, 5818 (2012).CrossRefGoogle Scholar
  8. 8.
    S. Dawar, N. Sing, R. K. Kanwar, et al., Drug Discov. Today 18, 1292 (2013).CrossRefGoogle Scholar
  9. 9.
    A. G. Akopdzhanov, N. L. Shimanovskii, V. Yu. Naumenko, I. P. Suzdalev, V. K. Imshennik, Yu. V. Maksimov, and S. V. Novichikhin, Russ. J. Phys. Chem. B 8, 584 (2014).CrossRefGoogle Scholar
  10. 10.
    R. Revia and M. Zhang, Mater. Today 19, 157 (2016).CrossRefGoogle Scholar
  11. 11.
    S. M. Janib, A. S. Moses, and J. A. MacKay, Adv. Drug Deliv. Rev. 62, 1052 (2010).CrossRefGoogle Scholar
  12. 12.
    B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Wiley, New York, 2008). doi 10.1002/9780470386323.ch6CrossRefGoogle Scholar
  13. 13.
    A. L. Iordanskii, S. Z. Rogovina, R. Yu. Kosenko, E. L. Ivantsova, and E. V. Prut, Dokl. Phys. Chem. 431, 60 (2010).CrossRefGoogle Scholar
  14. 14.
    V. A. Gerasin, E. M. Antipov, V. V. Karbushev, et al., Russ. Chem. Rev. 82, 303 (2013).CrossRefGoogle Scholar
  15. 15.
    A. L. Iordanskii, A. V. Bychkova, O. N. Sorokina, A.L. Kovarskii, R. Yu. Kosenko, V. S. Markin, K. Z. Gumargalieva, S. Z. Rogovina, and A. A. Berlin, Dokl. Phys. Chem. 457, 97 (2014).CrossRefGoogle Scholar
  16. 16.
    A. V. Bychkova, A. L. Iordanskii, A. L. Kovarskii, O. N. Sorokina, R. Yu. Kosenko, V. S. Markin, A. G. Filatova, K. Z. Gumargalieva, S. Z. Rogovina, and A. A. Berlin, Nanotechnol. Russ. 10, 325 (2015).CrossRefGoogle Scholar
  17. 17.
    S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, Adv. Colloid Interface Sci. 166, 8 (2011).CrossRefGoogle Scholar
  18. 18.
    V. I. Goldanskii and R. H. Herber, Chemical Applications of Mössbauer Spectroscopy (Academic, New York, 1968; Mir, Moscow, 1970).Google Scholar
  19. 19.
    I. P. Suzdalev, Gamma-Resonance Spectroscopy of Protein and Model Compounds (Nauka, Moscow, 1988) [in Russian].Google Scholar
  20. 20.
    C. Hawkins, J. M. Williams, A. C. Hudson, S. C. Andrews, and A. Treffty, Hyperfine Interact. 91, 827 (1994).CrossRefGoogle Scholar
  21. 21.
    I. P. Suzdalev, Dynamic Effects in γ-Resonance Spectroscopy (Atomizdat, Moscow, 1979) [in Russian].Google Scholar
  22. 22.
    E. Murad and J. H. Johnston, in Modern Inorganic Chemistry, Ed. by G. J. Long (Plenum, New York, 1987), p. 211.Google Scholar
  23. 23.
    E. Tronc, D. Fiorani, M. Nogues, et al., J. Magn. Magn. Mater. 262, 6 (2003).CrossRefGoogle Scholar
  24. 24.
    D. Ortega, M. Domingues, C. Barrera-Solano, and J. S. Garitaonandia, J. Non-Cryst. Solids 354, 5261 (2008).CrossRefGoogle Scholar
  25. 25.
    M. A. Morales, A. J. S. Mascarenhas, A. M. S. Gomes, et al., J. Colloid Interface Sci. 342, 269 (2010).CrossRefGoogle Scholar
  26. 26.
    I. Dezsi, Cs. Felzer, A. Gombkoetoe, et al., J. Appl. Phys. 103, 104312 (2008).CrossRefGoogle Scholar
  27. 27.
    S. Morup, Paramagnetic and Superparamagnetic Relaxation Phenomena Studied by Mössbauer Spectroscopy (Polyteknisk, Lyngby, Danish, 1981).Google Scholar
  28. 28.
    I. P. Suzdalev, Yu. V. Maksimov, V. K. Imshennik, S. V. Novichikhin, M. I. Ivanovskaya, D. A. Kotikov, V. V. Pan’kov, and Yu. Lyubina, Nanotechnol. Russ. 5, 817 (2010).CrossRefGoogle Scholar
  29. 29.
    K. N. Nishchev, M. A. Golub’ev, Yu. V. Maksimov, V. I. Beglov, V. M. Kyashkin, and A. A. Panov, Tech. Phys. 60, 695 (2015).CrossRefGoogle Scholar
  30. 30.
    Yu. V. Maksimov, M. V. Tsodikov, M. A. Perederii, et al., Surf. Interface Anal. 30, 74 (2000).CrossRefGoogle Scholar
  31. 31.
    M. A. Polikarpov, I. V. Trushin, and S. S. Yakimov, J. Magn. Magn. Mater. 116, 372 (1992).CrossRefGoogle Scholar
  32. 32.
    T. D. Waite and F. M. M. Morel, J. Colloid Interface Sci. 102, 121 (1984).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. E. Prusakov
    • 1
  • Yu. V. Maksimov
    • 1
  • K. N. Nishchev
    • 2
  • A. V. Golub’ev
    • 2
  • V. I. Beglov
    • 2
  • Yu. F. Krupyanskii
    • 1
  • A. V. Bychkova
    • 1
    • 3
  • A. L. Iordanskii
    • 1
  • A. A. Berlin
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Ogarev Mordova State UniversitySaranskRussia
  3. 3.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations