Proteomics of Transcription Factors: Identification of a Pool of HL-60 Cell Line-Specific Regulatory Proteins

  • S. E. NovikovaEmail author
  • I. V. Vakhrushev
  • A. V. Tsvetkova
  • N. A. Shushkova
  • T. E. Farafonova
  • K. N. Yarygin
  • V. G. Zgoda


HL-60 promyelocytic cells are a widely used as a model for studying induced granulocytic differentiation. Investigation of proteins of the nuclear fraction, particularly transcription factors, is necessary for a better understanding of molecular mechanisms of cell maturation. Mass spectrometry is a powerful tool for analyzing proteomes due to its high sensitivity, specificity and performance. In this study performed using the selected reaction monitoring (SRM) method, we have assessed the levels of RBPJ, STAT1, CEBPB, CASP3, VAV1, PRKDC, PARP1, and UBC9 nuclear proteins isolated using hypertonic buffer, detergents (sodium dodecyl sulfate (SDS), sodium deoxycholate (DOC) and cleavable detergent ProteaseMAX™) and using centrifugation in a sucrose density gradient. The minimum and maximum protein content was 1.13 ± 0.28 and 14.34 ± 1.63 fmol/μg of total protein for the transcription factor RBPJ and ubiquitin-protein ligase type I UBC9, respectively. According to the results of shotgun mass spectrometric analysis of nuclear fractions, 2356 proteins were identified, of which 106 proteins were annotated as transcription factors. 37 transcription factors were uniquely identified in the fraction obtained by centrifugation in a sucrose density gradient, while only 9 and 8 transcription factors were uniquely identified in the nuclear fractions obtained using hypertonic buffer and detergents, respectively. The transcription factors identified in the HL-60 cell line represent regulatory molecules; their directed profiling under the treatment of differentiation inducers, will shed light on the mechanism of granulocyte maturation.


s: nuclear proteome selected reaction monitoring (SRM) shotgun mass spectrometry transcription factors HL-60 cell line 



Experiments were performed in the Center for Collective Use “Human Proteome” (Institute of Biomedical Chemistry, Moscow).


The study was financially supported by the Russian Science Foundation (project no. 17-75-10201).


This article does not contain any research involving humans or using animals as objects.


  1. 1.
    Birnie, G.D., Br. J. Cancer., 1988, Suppl., vol. 9, pp. 41−45.Google Scholar
  2. 2.
    Collins, S.J., Blood, 1987, vol. 70, pp. 1233–1244.CrossRefGoogle Scholar
  3. 3.
    Collins, S.J., Robertson, K.A., and Mueller, L., Mol. Cell. Biol., 1990, vol. 10, no. 5, pp. 2154–2163.CrossRefGoogle Scholar
  4. 4.
    Drexler, H.G., MacLeod, R.A., and Uphoff, C.C., Leuk. Res., 1995, vol. 19, no. 10, pp. 681–691.CrossRefGoogle Scholar
  5. 5.
    Bertagnolo, V., Brugnoli, F., Grassilli, S., Nika, E., and Capitani, S., Cell. Signal., 2012, vol. 24, no. 3, pp. 612–620. CrossRefPubMedGoogle Scholar
  6. 6.
    Omura, T., Sakai, H., and Murakami, H., Eur. J. Biochem., 2002, vol. 269, no. 1, pp. 381–389.CrossRefGoogle Scholar
  7. 7.
    Lekstrom-Himes, J. and Xanthopoulos, K.G., J. Biol. Chem., 1998, vol. 273, no. 44, pp. 28 545–28 548CrossRefGoogle Scholar
  8. 8.
    Li, X., Li, C., Jin, J., Wang, J., Huang, J., Ma, Z., Huang, X., He, X., Zhou, Y., Xu, Y., Yu, M., Huang, S., Yan, X., Li, F., Pan, J., Wang, Y., Yu, Y., and Jin, J., EBioMedicine, 2018, vol. 38, pp. 47–56. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Spiekermann, K., Biethahn, S., Wilde, S., Hiddemann, W., and Alves, F., Eur. J. Haematol., 2001, vol. 67, no. 2, pp. 63–71.CrossRefGoogle Scholar
  10. 10.
    Geletu, M., Balkhi, M.Y., Peer Zada, A.A., Christopeit, M., Pulikkan, J.A., Trivedi, A.K., Tenen, D.G., and Behre, G., Blood, 2007, vol. 110, no. 9, pp. 3301–3309. CrossRefPubMedGoogle Scholar
  11. 11.
    Li, G.H., Fan, Y.Z., Liu, X.W., Zhang, B.F., Yin, D.D., He, F., Huang, S.Y., Kang, Z.J., Xu, H., Liu, Q., Wu, Y.L., Niu, X.L., Zhang, L., Liu, L., Hao, M.W., Han, H., and Liang, Y.M., Mol. Cell. Biochem., 2010, vol. 340, nos. 1–2, pp. 7–14. CrossRefPubMedGoogle Scholar
  12. 12.
    Hancock, R., J. Struct. Biol., 2004, vol. 146, no. 3, pp. 281–290. CrossRefPubMedGoogle Scholar
  13. 13.
    Simicevic, J., Schmid, A.W., Gilardoni, P.A., Zoller, B., Raghav, S.K., Krier, I., Gubelmann, C., Lisacek, F., Naef, F., Moniatte, M., and Deplancke, B., Nat. Methods, 2013, vol. 10, no. 6, pp. 570–576. CrossRefPubMedGoogle Scholar
  14. 14.
    Herrmann, C., Avgousti, D.C., and Weitzman, M.D., Bio-Protocol., 2017, vol. 7, no. 6, e2175.CrossRefGoogle Scholar
  15. 15.
    Lin, Y., Lin, H., Liu, Z., Wang, K., and Yan, Y., J. Sep. Sci., 2014, vol. 37, no. 22, pp. 3321–3329. CrossRefPubMedGoogle Scholar
  16. 16.
    Chang, Y.J., Gregorich, Z.R., Chen, A.J., Hwang, L., Guner, H., Yu, D., Zhang, J., and Ying, Ge.Y., Proteome Res., 2015, vol. 14, no. 3, pp. 1587–1599. CrossRefGoogle Scholar
  17. 17.
    Kopylov, A.T., Ponomarenko, E.A., Ilgisonis, E.V., Pyatnitskiy, M.A., Lisitsa, A.V., Poverennaya, E.V., Kiseleva, O.I., Farafonova, T.E., Tikhonova, O.V., Zavialova, M.G., Novikova, S.E., Moshkovskii, S.A., Radko, S.P., Morukov, B.V., Grigoriev, A.I., Paik, Y.K., Salekdeh, G.H., Urbani, A., Zgoda, V.G., and Archakov, A.I., J. Proteome Res., 2018, vol. 18, no. 1, pp. 120–129. CrossRefPubMedGoogle Scholar
  18. 18.
    Wiśniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M., Nat. Methods, 2009, vol. 6, no. 5, pp. 359–362. CrossRefPubMedGoogle Scholar
  19. 19.
    Moulder, R., Lönnberg, T., Elo, L.L., Filén, J.J., Rainio, E., Corthals, G., Oresic, M., Nyman, T.A., Aittokallio, T., and Lahesmaa, R., Mol. Cell. Proteomics, 2010, vol. 9, no. 9, pp. 1937–1953. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Vakhrushev, I.V., Novikova, S.E., Tsvetkova, A.V., Pyatnitskiy, M.A., and Yarygin, K.N., Biomed. Khim., 2018, vol. 64, no. 3, pp. 233–240. CrossRefPubMedGoogle Scholar
  21. 21.
    Zgoda, V.G., Kopylov, A.T., Tikhonova, O.V., Moisa, A.A., Pyndyk, N.V., Farafonova, T.E., Novikova, S.E., Lisitsa, A.V., Ponomarenko, E.A., Poverennaya, E.V., Radko, S.P., Khmeleva, S.A., Kurbatov, L.K., Filimonov, A.D., Bogolyubova, N.A., Ilgisonis, E.V., Chernobrovkin, A.L., Ivanov, A.S., Medvedev, A.E., Mezentsev, Y.V., Moshkovskii, S.A., Naryzhny, S.N., Ilina, E.N., Kostrjukova, E.S., Alexeev, D.G., Tyakht, A.V., Govorun, V.M., and Archakov, A.I., J. Proteome Res., 2013, vol. 12, no. 1, pp. 123–134. CrossRefPubMedGoogle Scholar
  22. 22.
    Novikova, S.E., Tikhonova, O.V., Kurbatov, L.K., Farafonova, T.E., Vakhrushev, I.V., and Zgoda, V.G., Eur. J. Mass Spectrom., 2017, vol. 23, no. 4, pp. 202–208. CrossRefGoogle Scholar
  23. 23.
    Shushkova, N.A., Vavilov, N.E., Novikova, S.E., Farafonova, T.E., Tikhonova, O.V., Liao, P.-C., and Zgoda, V.G., Biomed. Khim., 2018, vol. 64, no. 6, pp. 496–504. CrossRefPubMedGoogle Scholar
  24. 24.
    Sharrocks, A.D., Nat. Rev. Mol. Cell Biol., 2001, vol. 2, no. 11, pp. 827–837. CrossRefPubMedGoogle Scholar
  25. 25.
    Wilson, N.K., Foster, S.D., Wang, X., Knezevic, K., Schütte, J., Kaimakis, P., Chilarska, P.M., Kinston, S., Ouwehand, W.H., Dzierzak, E., Pimanda, J.E., de Bruijn, M.F., and Göttgens, B., Cell Stem Cell., 2010, vol. 7, no. 4, pp. 532–544. CrossRefPubMedGoogle Scholar
  26. 26.
    Sotoca, A.M., Prange, K.H., Reijnders, B., Mandoli, A., Nguyen, L.N., Stunnenberg, H.G., and Martens, J.H., Oncogene, 2016, vol. 35, no. 15, pp. 1965–1976. CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. E. Novikova
    • 1
    Email author
  • I. V. Vakhrushev
    • 1
  • A. V. Tsvetkova
    • 1
  • N. A. Shushkova
    • 1
  • T. E. Farafonova
    • 1
  • K. N. Yarygin
    • 1
  • V. G. Zgoda
    • 1
  1. 1.Institute of Biomedical ChemistryMoscowRussia

Personalised recommendations