Computer-Aided Xenobiotic Toxicity Prediction Taking into Account their Metabolism in the Human Body

  • A. V. RudikEmail author
  • A. V. Dmitriev
  • A. A. Lagunin
  • S. M. Ivanov
  • D. A. Filimonov
  • V. V. Poroikov


Most xenobiotics undergo metabolic conversions in the human body. The biological activity, toxicity, and other properties of such metabolites may significantly differ from those of the parent compounds. Not only xenobiotics and their final metabolites produced in large quantities, but the intermediates and final metabolites formed in trace amounts, can cause undesirable effects. We have developed a freely available web application MetaTox ( for integral assessment of xenobiotics toxicity taking into account their metabolism in humans. The generation of the metabolite structures is based on the reaction fragments. The probability estimation of the certain reaction and the probability estimation of the atoms, which are changed during biotransformation, are used for generation of the xenobiotic metabolism pathways. The MetaTox web application assesses metabolism of compounds in humans and evaluates their acute toxicity, specific (cardiotoxicity, hepatotoxicity, nephrotoxicity), and chronic toxicity (carcinogenicity, teratogenicity, mutagenicity, effects on the reproductive system).


biotransformation metabolism prediction toxicity PASS MetaTox web application 



This work was supported by the Russian Science Foundation (project no. 14-15-00449).


This article does not contain any research involving humans or using animals as objects.


  1. 1.
    Testa, B. and Jenner, P., in Drug Metabolism: Chemical And Biochemical Aspects, Oelschläger, H., Ed., New York: Marcel Dekker Inc., 1976.Google Scholar
  2. 2.
    Benedetti, M.S., Whomsley, R., Poggesi, I., Cawello, W., Mathy, F.X., Delporte, M.L., Papeleu, P., and Watelet, J.B., Drug Metab. Rev., 2009, vol. 41, no. 3, pp. 344–390. CrossRefGoogle Scholar
  3. 3.
    Liu, W., Shi, J., Zhu, L., Dong, L., Luo, F., Zhao, M., Wang, Y., Hu, M., Lu, L., and Liu, Z., Drug Des. Devel. Ther., 2015, vol. 9, pp. 5771–5783. CrossRefGoogle Scholar
  4. 4.
    Li, X., Kamenecka, T.M., and Cameron, M.D., Drug Metab. Dispos., 2010, vol. 38, no. 7, pp. 1238–1245. CrossRefGoogle Scholar
  5. 5.
    van Eij, S., Zh, Z., Cupit, J., Gierula, M., Götz, C., Fritsche, E., and Edwards, R.J., PLoS One, 2012, vol. 7, no. 7, e41721. CrossRefGoogle Scholar
  6. 6.
    FDA, Safety Testing of Drug Metabolites Guidance for Industry (2016) URL:…/Guidances/ucm079266.pdf.Google Scholar
  7. 7.
    Bezhentsev, V.M., Tarasova, O.A., Dmitriev, A.V., Rudik, A.V., Lagunin, A.A., Filimonov, D.A., and Poroikov, V.V., Russ. Chem. Rev., 2016, vol. 85, no. 8, pp. 854–879. CrossRefGoogle Scholar
  8. 8.
    Kirchmair, J., Williamson, M.J., Tyzack, J.D., Tan, L., Bond, P.J., Bender, A., and Glen, R.C., J. Chem. Inf. Model., 2012, vol. 52, no. 3, pp. 617–648. CrossRefGoogle Scholar
  9. 9.
    Singh, S.B., Shen, L.Q., Walker, M.J., and Sheridan, R.P., J. Med. Chem., 2003, vol. 46, no. 8, pp. 1330–1336.CrossRefGoogle Scholar
  10. 10.
    Kirchmair, J., Göller, A.H., Lang, D., Kunze, J., Testa, B., Wilson, I.D., Glen, R.C., and Schneider, G., Nat. Rev. Drug Discov., 2015, vol. 14, no. 6, pp. 387–404. CrossRefGoogle Scholar
  11. 11.
    Wang, B., Yang, L.-P., Zhang, X.-Z., Huang, S.-Q., Bartlam, M., and Zhou, S.-F., Drug Metab. Rev., 2009, vol. 41, no. 4, pp. 573–643. CrossRefGoogle Scholar
  12. 12.
    Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E.W., Pharmacol. Rev., 2014, vol. 66, no. 1, pp. 334–395. CrossRefGoogle Scholar
  13. 13.
    Ivanov, S.M., Lagunin, A.A., and Poroikov, V.V., Drug Discov. Today, 2016, vol. 21, no. 1, pp. 58–71. CrossRefGoogle Scholar
  14. 14.
    Rudik, A.V., Bezhentsev, V.M., Dmitriev, A.V., Druzhilovskiy, D.S., Lagunin, A.A., Filimonov, D.A., and Poroikov, V.V., J. Chem. Inf. Model., 2017, vol. 57, no. 4, pp. 638–642. CrossRefGoogle Scholar
  15. 15.
    Rudik, A.V., Dmitriev, A.V., Bezhentsev, V.M., Lagunin, A.A., Filimonov, D.A., and Poroikov, V.V., SAR QSAR Environ. Res., 2017, vol. 28, no. 10, pp. 833–842. CrossRefGoogle Scholar
  16. 16.
    Rudik, A., Dmitriev, A., Lagunin, A., Filimonov, D., and Poroikov, V., Bioinformatics, 2015, vol. 31, no. 12, pp. 2046–2048. CrossRefGoogle Scholar
  17. 17.
    Ivanov, S.M., Lagunin, A.A., Rudik, A.V., Filimonov, D.A., and Poroikov, V.V., J. Chem. Inf. Model., 2018, vol. 58, no. 1.
  18. 18.
    Kuhn, M., Letunic, I., Jensen, L.J., and Bork, P., Nucleic Acids Res., 2016, vol. 44, no. D1, pp. D1075–D1079. CrossRefGoogle Scholar
  19. 19.
    Chen, M., Bisgin, H., Tong, L., Hong, H., Fang, H., Borlak, J., and Tong, W., Biomarkers Med., 2014, vol. 8, no. 2, pp. 201–213. CrossRefGoogle Scholar
  20. 20.
    Fourches, D., Muratov, E., and Tropsha, A., Nat. Chem. Biol., 2015, vol. 11, no. 8, p. 535. CrossRefGoogle Scholar
  21. 21.
    URL: 20150930/CPDBAS_DownloadFiles/.Google Scholar
  22. 22.
    Lagunin, A., Rudik, A., Druzhilovsky, D., Filimonov, D., and Poroikov, V., Bioinformatics, 2018, vol. 34, no. 4, pp. 710–712. CrossRefGoogle Scholar
  23. 23.
    Berezovskaya, I.V., Pharm. Chem. J., 2003, vol. 37, no. 3, pp. 139–141.CrossRefGoogle Scholar
  24. 24.
    Boelsterli, U.A., Toxicol. Appl. Pharmacol., 2003, vol. 192, no. 3, pp. 307–322.CrossRefGoogle Scholar
  25. 25.
    Kalgutkar, A.S., Dalvi, D., Obach, R.S., and Smith, D.A., in Reactive Drug Metabolites, Mannhold, R., Kubinyi, H., and Folkers, G., Eds., Willey-VCH, 2012.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Rudik
    • 1
    Email author
  • A. V. Dmitriev
    • 1
  • A. A. Lagunin
    • 1
    • 2
  • S. M. Ivanov
    • 1
    • 2
  • D. A. Filimonov
    • 1
  • V. V. Poroikov
    • 1
  1. 1.Institute of Biomedical ChemistryMoscowRussia
  2. 2.Medico-Biological Faculty, Pirogov Russian National Research Medical University (RNRMU)MoscowRussia

Personalised recommendations