Preparation and Characterization of a New Mutant Homolog of the Chemotaxis Protein CheY from the Anaerobic Hyperthermophilic Microorganism Thermotoga Naphthophila

  • D. V. GrishinEmail author
  • Ju. A. Gladilina
  • D. D. Zhdanov
  • M. V. Pokrovskaya
  • I. Yu. Toropygin
  • S. S. Aleksandrova
  • V. S. Pokrovskiy
  • N. N. Sokolov


Using genetic engineering methods we have developed expression vectors for synthesis of recombinant proteins TnaCheY and TnaCheY-mut, the homologues of the chemotaxis protein CheY from the hyperthermophilic organism Thermotoga naphthophila in Escherichia coli BL21(DE3) cells. The cultivation conditions of transformed cell strains were optimized. The influence of episomal expression of the heterologous chemotaxis protein CheY on growth kinetics parameters of the culture of mesophilic bacteria E. coli was investigated. The optimal purification flowchart of the obtained proteins using thermolysis has been proposed. Based on the data obtained, we discuss potential areas of application of recombinant variants of the CheY thermostable chemotactic protein. Using the E. coli BL21(DE3) laboratory strain as an example, the possibility of employment of the episomal expression of such proteins to control the cultivation and production time of pharmaceutically and industrially valuable metabolites due to the impact on some stages of the bacterial chemotaxis has been experimentally proven.


recombinant protein thermal stability chemotaxis protein CheY strain-producer expression biotechnology 



The study was financially supported by the Russian Science Foundation (project no. 16-16-04086).


This article does not contain any research involving humans or using animals as objects.


  1. 1.
    Sourjik, V. and Berg, H.C., Mol. Microbiol., 2000, vol. 37, pp. 740–751.CrossRefGoogle Scholar
  2. 2.
    Sourjik, V. and Berg, H.C., Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 12669–12674.CrossRefGoogle Scholar
  3. 3.
    Park, S.Y., Chao, X., Gonzalez-Bonet, G., Beel, B.D., Bilwes, A.M., and Crane, B.R., Mol. Cell, 2004, vol. 16, pp. 563–574.Google Scholar
  4. 4.
    Sircar, R., Greenswag, A.R., Bilwes, A.M., Gonzalez-Bonet, G., and Crane, B.R., J. Biol. Chem., 2013, vol. 288, pp. 13493–13502.CrossRefGoogle Scholar
  5. 5.
    Bitbol, A.-F. and Wingreen, N.S., Biophys. J., 2015, vol. 108, pp. 1293–1305.CrossRefGoogle Scholar
  6. 6.
    Lipkow, K., Andrews, S.S., and Bray, D., J. Bacteriol., 2005, vol. 187, pp. 45–53.CrossRefGoogle Scholar
  7. 7.
    Dahlquist, F.W., Biophys. J., 2018, vol. 114, pp. 505–506.CrossRefGoogle Scholar
  8. 8.
    Cuadros, C., Lopez-Hernandez, F.J., Dominguez, A.L., McClelland, M., and Lustgarten, J., Infect. Immun., 2004, vol. 72, pp. 2810–2816.CrossRefGoogle Scholar
  9. 9.
    Rizzuto, R., Brini, M., Pizzo, P., Murgia, M., and Pozzan, T., Curr. Biol., 1995, vol. 5, pp. 635–642.CrossRefGoogle Scholar
  10. 10.
    Grishin, D.V., Zhdanov, D.D., Gladilina, Yu.A., Pokrovskiy, V.S., Podobed, O.V., Pokrovskaya, M.V., Aleksandrova, S.S., Milyushkina, A.L., Vigovskii, M.A., and Sokolov, N.N., Biomed. Khim., 2018, vol. 64, pp. 53–60. CrossRefGoogle Scholar
  11. 11.
    Grishin, D.V., Gladilina, Y.A., Aleksandrova, S.S., Pokrovskaya, M.V., Podobed, O.V., Pokrovskiy, V.S., Zhdanov, D.D., and Sokolov, N.N., Appl. Biochem. Microbiol., 2017, vol. 53, 688–698.CrossRefGoogle Scholar
  12. 12.
    Grishin, D.V., Podobed, O.V., Gladilina, Yu.A., Pokrovskaya, M.V., Aleksandrova, S.S., Pokrovskyi, V.S., and Sokolov, N.N., Vopr. Pitaniya, 2017, vol. 86, pp. 19–31.Google Scholar
  13. 13.
    Drury, L., Methods Mol. Biol., 1996, vol. 58, pp. 249–256.Google Scholar
  14. 14.
    Gibson, D.G., Methods Enzymol., 2011, vol. 498, pp. 349–361.CrossRefGoogle Scholar
  15. 15.
    Yadav, P., Yadav, A., Garg, V., Datta, T.K., Goswami, S.L., and De, S., Indian J. Exp. Biol., 2011, vol. 49, pp. 558–560.Google Scholar
  16. 16.
    Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefGoogle Scholar
  17. 17.
    Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.CrossRefGoogle Scholar
  18. 18.
    Felsenstein, J., Evolution, 1985, vol. 39, pp. 783–791.CrossRefGoogle Scholar
  19. 19.
    Yang, C., Xu, Y., Jia, R., Li, P., Zhang, L., Wang, M., Zhu, D., Chen, S., Liu, M., Yin, Z., and Cheng, A., J. Virol. Methods, 2017, vol. 247, pp. 1–5.CrossRefGoogle Scholar
  20. 20.
    Tanaka, M., Tokuoka, M., and Gomi, K., Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 3859–3867.CrossRefGoogle Scholar
  21. 21.
    Gustafsson, C., Govindarajan, S., and Minshull, J., Trends Biotechnol., 2004, vol. 22, pp. 346–353.CrossRefGoogle Scholar
  22. 22.
    Murashima, K., Kosugi, A., and Doi, R.H., Proteins, 2003, vol. 50, pp. 620–628.CrossRefGoogle Scholar
  23. 23.
    Costa, S., Almeida, A., Castro, A., and Domingues, L., Front. Microbiol, 2014, vol. 19, 63.Google Scholar
  24. 24.
    Silversmith, R.E., Guanga, G.P., Betts, L., Chu, C., Zhao, R., and Bourret, R.B., J. Bacteriol., 2003, vol. 185, pp. 1495–1502.CrossRefGoogle Scholar
  25. 25.
    Sarkar, M.K., Paul, K., and Blair, D., Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 9370–9375.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. V. Grishin
    • 1
    Email author
  • Ju. A. Gladilina
    • 1
  • D. D. Zhdanov
    • 1
    • 2
  • M. V. Pokrovskaya
    • 1
  • I. Yu. Toropygin
    • 1
  • S. S. Aleksandrova
    • 1
  • V. S. Pokrovskiy
    • 1
    • 2
  • N. N. Sokolov
    • 1
  1. 1.Institute of Biomedical ChemistryMoscowRussia
  2. 2.Peoples Friendship University of RussiaMoscowRussia

Personalised recommendations