Advertisement

Long-Term Social Isolation Changes the Sensitivity of Monoaminergic Brain Systems to Acute Hypoxia with Hypercapnia

  • I. V. KarpovaEmail author
  • V. V. Mikheev
  • V. V. Marysheva
  • N. A. Kuritcyna
  • E. R. Bychkov
  • P. D. Shabanov
Article
  • 3 Downloads

Abstract

The experiments were performed in male albino mice kept in a group or under conditions of long-term social isolation. Changes in the monoaminergic systems of the left and right hemispheres of the brain have been investigated after acute hypoxia with hypercapnia. The levels of dopamine (DA), serotonin (5-HT) and their metabolites, dioxyphenylacetic (DOPAC), homovanillic (HVA), and 5-hydroxyindoleacetic (5‑HIAA) acids, were determined by HPLC in the cerebral cortex, hippocampus, and striatum of the right and left sides of the brain. Control mice kept both in the group and under conditions of social isolation had a higher DA content in the left cerebral cortex. In the other brain structures the monoamine content was symmetric. In the cerebral cortex of mice kept in the group, acute hypoxia with hypercapnia resulted in a right-sided increase in the DA and 5-HT levels. At the same time, the DOPAC content decreased in the left cortex. In mice kept in the group hypoxia with hypercapnia conditions increased the DA level in the left hippocampus. In the striatum, the content of monoamines and their metabolites remained insignificantly changed. In animals kept for a long time under the conditions of social isolation, hypoxia with hypercapnia did not cause any statistically significant changes in the monoamines and their metabolites levels. It has been concluded that the preliminary maintenance under conditions of prolonged social isolation changes the reaction of central monoaminergic systems to acute hypoxia with hypercapnia.

Keywords:

hypoxia with hypercapnia social isolation monoamines striatum hippocampus cerebral cortex 

Notes

REFERENCES

  1. 1.
    Nakajima, W., Ishida, A., and Takada, G., Brain Res. Brain Res. Protoc., 1999, vol. 3, no. 3, pp. 252–256.CrossRefGoogle Scholar
  2. 2.
    Karpova, I.V., Mikheev, V.V., Marysheva, V.V., Bychkov, E.R., and Shabanov, P.D., Biomed. Khim., 2014, vol. 60, pp. 258–263.  https://doi.org/10.18097/PBMC20146002258 CrossRefGoogle Scholar
  3. 3.
    Karpova, I.V., Mikheev, V.V., Marysheva, V.V., Kuritcyna, N.A., Popkovskii, N.A., Bychkov, E.R., and Shabanov, P.D., Biomed. Khim., 2018, vol. 64, pp. 257–260.  https://doi.org/10.18097/PBMC20186403257 CrossRefGoogle Scholar
  4. 4.
    Vedyasova, O.A., Vestnik SamGU — Yestestvennonauchnaya seriya, Vtoroy spetsvypusk, 2003, pp. 174–181.Google Scholar
  5. 5.
    Pena, F. and Ramirez, J.M., J. Neurosci., 2002, vol. 22, pp. 11 055–11 064.CrossRefGoogle Scholar
  6. 6.
    Sullivan, R.M., Stress, 2004, vol. 7, no. 2, pp. 131–143.  https://doi.org/10.1080/102538900410001679310 CrossRefGoogle Scholar
  7. 7.
    Dremencov, E., Gispan-Herman, I., Rosenstein, M., Mendelman, A., Overstreet, D.H., Zohar, J., and Yadid, G., Prog. Neuropsychopharmacol. Biol. Psychiatry., 2004, vol. 28, no. 1, pp. 141–147.  https://doi.org/10.1016/j.pnpbp.2003.09.030 CrossRefGoogle Scholar
  8. 8.
    Karpova, I.V., Mikheev, V.V., Bychkov, E.R., Lebedev, A.A., and Shabanov P.D., Obzory po Klinicheskoi Psikhofarmakologii i Lekarstvennoi Terapii, 2012, vol. 10, no. 4, pp. 42–48.Google Scholar
  9. 9.
    Krasnova, I.N., Bychkov, E.R., Lioudyno, V.I., Zubareva, O.E., and Dambinova S.A., Neuroscience, 2000, vol. 95, no. 1, pp. 113–117.CrossRefGoogle Scholar
  10. 10.
    Hedner, T., Lundborg, P., and Engel, J., Biol. Neonate, 1978, vol. 34, nos. 1–2, pp. 55–60.CrossRefGoogle Scholar
  11. 11.
    Saligaut, C., Chretien, P. Daoust, M., Moore, N., and Boismare, F., Methods Find. Exp. Clin. Pharmacol., 1986, vol. 8, no. 6, pp. 343–349.Google Scholar
  12. 12.
    Trouvin, J.H., Prioux-Guyonneau, M., Cohen, Y., and Jacquot, C., Gen. Pharmacol., 1986, vol. 17, no. 1, pp. 69–73.CrossRefGoogle Scholar
  13. 13.
    Goroshinskaya, I.A. and Neskubina, I.V., Vopr. Med. Khim., 1998, vol. 44, no. 3, pp. 248–255.Google Scholar
  14. 14.
    Conlee, K.M., Stephens, M.L., Rowan, A.N., and King, L.A., Lab. Anim., 2005, vol. 39, no. 2, pp. 137–161.  https://doi.org/10.1258/0023677053739747 CrossRefGoogle Scholar
  15. 15.
    Moody, C.M., Chua, B., and Weary, D.M., Lab. Anim., 2014, vol. 48, no. 4, pp. 298–304.  https://doi.org/10.1177/0023677214546509 CrossRefGoogle Scholar
  16. 16.
    Boivin, G.P., Bottomley, M.A., Schiml, P.A., Goss, L., and Grobe, N.J., Am. Assoc. Lab. Anim. Sci., 2017, vol. 56, no. 1, pp. 69–78. PMCID: PMC5250498Google Scholar
  17. 17.
    Takahashi, A., Shiroishi, T., and Koide, T., Front. Neurosci., 2014, vol. 8, 156.  https://doi.org/10.3389/fnins.2014.00156 CrossRefGoogle Scholar
  18. 18.
    van Erp, A.M.M. and Miczek, K.A., J. Neurosci., 2000, vol. 20, no. 24, pp. 9320–9325.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Karpova
    • 1
    Email author
  • V. V. Mikheev
    • 2
  • V. V. Marysheva
    • 2
  • N. A. Kuritcyna
    • 3
  • E. R. Bychkov
    • 1
    • 2
  • P. D. Shabanov
    • 1
    • 2
  1. 1.Institute of Experimental MedicineSt. PetersburgRussia
  2. 2.Kirov Military Medical AcademySt. PetersburgRussia
  3. 3.Saint Petersburg State Pediatric Medical UniversitySt. PetersburgRussia

Personalised recommendations