Advertisement

The Role of Sphingolipids in Cardiovascular Pathologies

  • A. V. AlessenkoEmail author
  • A. T. Lebedev
  • I. N. Kurochkin
Article
  • 3 Downloads

Abstract

Cardiovascular diseases (CVD) remain the leading cause of death in industrialized countries. One of the most important risk factors for atherosclerosis is hypercholesterolemia; its diagnostics is mainly based on regular analysis of the lipid profile, including the determination of total cholesterol, low and high density lipoprotein cholesterol, and triglycerides. However, in recent years, much attention has been paid to the crosstalk between metabolic pathways of cholesterol and sphingolipid biosynthesis. Sphingolipids are a group of lipids that include a molecule of sphingosine aliphatic alcohol. These include sphingomyelins, cerebrosides, gangliosides, ceramides, sphingosines, and sphingosine-1-phosphate. It has been found that sphingolipid catabolism is associated with cholesterol catabolism. However, the exact mechanism of this interaction still remains unknown. Ceramide attracts particular attention as a CVD inducer. Aggregated lipoproteins isolated from atherosclerotic zones were found to be enriched with ceramides. Ceramide and sphingosine levels increase after ischemia/reperfusion of the heart, in the infarction area and in the blood, as well as in hypertension. Sphingosine-1-phosphate (S-1-P) exhibits pronounced cardioprotective properties. Its quantity sharply decreased during ischemia and myocardial infarction. S-1-P predominated in the structure of high-density lipoproteins (HDL), where it has a significant impact on their multiple functions. An increase in ceramide and sphingosine and a decrease in S-1-P levels during progression of coronary heart disease may be an important factor in the development of atherosclerosis. It is proposed to use determination of sphingolipid levels in the blood plasma as markers for early diagnostics of cardiac ischemia and in hypertension in humans. Recently, intensive studies have been undertaken to create drugs that can correct S-1-P metabolism. The most successful developments include agents targeted to the S-1-P receptor, which mediates all S-1-P effects. Chromatography-mass spectrometry is proposed as the main method for testing these lipids.

Keywords

: cardiovascular diseases markers sphingolipids ceramide sphingosine-1-phosphate 

Notes

REFERENCES

  1. 1.
    Borodzicz, S., Czarzasta, K., Kuch, M., and Cudnoch-Jedrzejewska, A., Lipids Health Disease, 2015, vol. 14, 55  https://doi.org/10.1186/s12944-015-0053-y CrossRefGoogle Scholar
  2. 2.
    Park, T.S. and Goldberg, I., J. Heart Fail. Clin., 2012, vol. 8, pp. 633–641.  https://doi.org/10.1016/j.hfc.2012.06.003 CrossRefGoogle Scholar
  3. 3.
    Pan, W., Yu, J., Shi, R., Yan, L., Yang, T., Li, Y., Zhang, Z., Yu, G., Bai, Y., Schuchman, E.H., He, X., and Zhang, G., Coron. Artery Dis., 2014, vol. 25, pp. 230–235.  https://doi.org/10.1097/MCA.0000000000000079 CrossRefGoogle Scholar
  4. 4.
    Hannun, Y.A. and Obeid, L.M., Nat. Rev. Mol. Cell. Biol., 2018, vol. 19, pp. 175–191.  https://doi.org/10.1038/nrm.2017.107 CrossRefGoogle Scholar
  5. 5.
    Hannun, Y.A. and Obeid, L.M., Nat. Rev. Mol. Cell. Biol., 2008, vol. 9, pp. 139–150.  https://doi.org/10.1038/nrm2329 CrossRefGoogle Scholar
  6. 6.
    Pruett, S.T., Bushnev, A., Hagedorn, K., Adiga, M., Haynes, C.A., Sullards, M.C., Liotta, D.C., and Merrill, A.H., Jr., J. Lipid Res., 2008, vol. 49, pp. 1621–1639.CrossRefGoogle Scholar
  7. 7.
    Mao, C. and Obeid, L.V., Biochim. Biophys. Acta, 2008, vol. 1781, pp. 424–434.CrossRefGoogle Scholar
  8. 8.
    Grosch, S., Alessenko, A., and Albi, E., Mediator Inflammation, 2018, vol. 2018, 5378284.  https://doi.org/10.1155/2018/5378284 CrossRefGoogle Scholar
  9. 9.
    Maceyka, M., Harikumar, K.B., Milstein, S., and Spiegel, S., Trends Cell Biol., 2012, vol. 22, pp. 50–60.CrossRefGoogle Scholar
  10. 10.
    Bielawska, A.E., Shapiro, J.P., Jiang, L., Melkonyan, H.S., Piot, C., Wolfe, C.L., Tomei, D., Hannun, Y.A., and Umansky, S.R., Am. J. Pathol., 1997, vol. 151, pp. 1257–1263.Google Scholar
  11. 11.
    Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., et al., Biochim. Biophys. Acta, 2006, vol. 1758, pp. 1864–1884.  https://doi.org/10.1016/j.bbamem.2006.08.009 CrossRefGoogle Scholar
  12. 12.
    Barenholz, Y., J. Biol. Chem., 2004, vol. 279, pp. 9997−10004.CrossRefGoogle Scholar
  13. 13.
    Stein, O., Ben-Naim, M., Dabach, Y., Hollander, G., and Stein, Y., Biochim. Biophys. Acta, 1992, vol. 1126, pp. 291–297.CrossRefGoogle Scholar
  14. 14.
    Härmälä, A.S., Pörn, M.I., and Slotte, J.P., Biochim. Biophys. Acta, 1993, vol. 1210, pp. 97–104.CrossRefGoogle Scholar
  15. 15.
    Modrzejewski, W., Knapp, M., Dobrzyn, A., Musial, W.J., and Górski, J., Przegl Lek., 2008, vol. 65, pp. 131–134.Google Scholar
  16. 16.
    Phipps, Z.C., Seck, F., Davis, A.N., Rico, J.E., and McFadden, J.W., J. Dairy Sci., 2017, vol. 100, pp. 8602–8608.  https://doi.org/10.3168/jds.2016-12538 CrossRefGoogle Scholar
  17. 17.
    Cordis, G.A., Yoshida, T., and Das, D.K., J. Pharm. Biomed. Anal., 1998, vol. 16, pp. 1189–1193.  https://doi.org/10.1016/S0731-7085(97)00260-4 CrossRefGoogle Scholar
  18. 18.
    Spijkers, L.J., van den Akker, R.F., Janssen, B.J., Debets, J.J., De Mey, J.G., Stroes, E.S., van den Born, B.J., Wijesinghe, D.S., Chalfant, C.E., MacAleese, L., Eijkel, G.B., Heeren, R.M., Alewijn-se, A.E., and Peters, S.L., PLoS One, 2011, vol. 6, e21817.  https://doi.org/10.1371/journal.pone.0021817 CrossRefGoogle Scholar
  19. 19.
    Knapp, M., Lisowska, A., Zabielski, P., Musiał, W., and Baranowski, M., Prostaglandins Other Lipid Mediat., 2013, vol. 106, pp. 53–61.  https://doi.org/10.1016/j.prostaglandins.2013.10.001 CrossRefGoogle Scholar
  20. 20.
    Sattler, K. and Levkau, B., Cardiovasc. Res., 2009, vol. 82, pp. 201–211.CrossRefGoogle Scholar
  21. 21.
    Means, C.K. and Brown, J.H., Cardiovasc. Res., vol. 82, pp. 193–200.Google Scholar
  22. 22.
    Fryer, R.M., Muthukumarana, A., Harrison, P.C., Nodop Mazurek, S., Chen, R.R., Harrington, K.E., et al., PLoS One, 2012, vol. 7, e52985.  https://doi.org/10.1371/journal.pone.0052985 CrossRefGoogle Scholar
  23. 23.
    Baranowski, M., and Górski, J., J. Adv. Exp. Med. Biol., 2011, vol. 721, pp. 41–56.  https://doi.org/10.1007/978-1-4614-0650-1_3 CrossRefGoogle Scholar
  24. 24.
    Czarny, M. and Schnitzer, J.E., Am. J. Physiol. Heart Circ. Physiol., 2004, vol. 287, pp. H1344–H1352.CrossRefGoogle Scholar
  25. 25.
    Zarate, Y.A. and Hopkin, R.J., Lancet, 2008, vol. 372, pp. 1427–1435.  https://doi.org/10.1016/S0140-6736(08)61589-5 CrossRefGoogle Scholar
  26. 26.
    Guertl, B., Noehammer, C., and Hoefler, G., Int. J. Exp. Pathol., 2000, vol. 81, pp. 349–372.  https://doi.org/10.1046/j.1365-2613.2000.00186.x CrossRefGoogle Scholar
  27. 27.
    Cui, J., Engelman, R.M., Maulik, N., and Das, D.K., J. Am. Coll. Surg., 2004, vol. 198, pp. 770–777.  https://doi.org/10.1016/j.jamcollsurg.2003.12.016 CrossRefGoogle Scholar
  28. 28.
    Zhang, D.X., Fryer, R.M., Hsu, A.K., Gross, G.J., Campbell, W.B., and Li, P.-L., Basic Res. Cardiol., 2001, vol. 96, pp. 267–274.  https://doi.org/10.1007/s00395-012-0266-4 CrossRefGoogle Scholar
  29. 29.
    Beręsewicz, A., Dobrzyń, A., and Górski, J., J. Physiol. Pharmacol., 2002, vol. 53, pp. 371–382.Google Scholar
  30. 30.
    Baranowski, M., Zabielski, P., Błachnio, A., and Górski, J., Acta Physiol., 2008, vol. 192, pp. 519–529.  https://doi.org/10.1111/j.1748-1716.2007.01755.x CrossRefGoogle Scholar
  31. 31.
    Knapp, M., Zendzian-Piotrowska, M., Błachnio-Zabielska, A., Zabielski, P., Kurek, K., and Górski, J., Basic Res. Cardiol., 2012, vol. 107, p. 294.  https://doi.org/10.1007/s00395-012-0294-0 CrossRefGoogle Scholar
  32. 32.
    Egom, E.E., Mamas, M.A., Chacko, S., Stringer, S.E., Charlton-Menys, V., El-Omar, M., et al., Front. Physiol., 2013, vol. 4, pp. 130–136.  https://doi.org/10.3389/fphys.2013.00130 CrossRefGoogle Scholar
  33. 33.
    Usta, E., Mustafi, M., Artunc, F., Walker, T., Voth, V., Aebert, H., and Ziemer, G., J. Cardiothor. Surg., 2011, vol. 6, pp. 38–45.  https://doi.org/10.1186/1749-8090-6-38 CrossRefGoogle Scholar
  34. 34.
    Cavalli, A.M., Ligutti, J.A., Gellings, N.M., et al., Basic Appl. Myol., 2002, vol. 12, pp. 167–175.Google Scholar
  35. 35.
    Deutschman, D.H., Carstens, J.S., Klepper, R.L., Smith, W.S., Page, M.T., Young, T.R., et al., Am. Heart J., 2003, vol. 146, pp. 62–68.  https://doi.org/10.1016/S0002-8703(03)00118-2 CrossRefGoogle Scholar
  36. 36.
    Vessey, D.A., Li, L., Kelley, M., Zhang, J., and Karliner, J.S., J. Biochem. Mol. Toxicol., 2008, vol. 22, pp. 113–118.CrossRefGoogle Scholar
  37. 37.
    Vessey, D.A., Kelley, M., Li, L., and Huang, Y., Oxid. Med. Cell. Longev., 2009, vol. 2, pp. 146–151.  https://doi.org/10.4161/oxim.2.3.8622 CrossRefGoogle Scholar
  38. 38.
    Kurano, M. and Yatomi, Y., J. Atheroscler. Thromb., 2018, vol. 25, pp. 16–26.  https://doi.org/10.5551/jat.RV17010 CrossRefGoogle Scholar
  39. 39.
    Peters, S.L.M. and Alewijnse, A.E., Curr. Opin. Pharmacol., 2007, vol. 7, pp. 186–192.  https://doi.org/10.1016/j.coph.2006.09.008 CrossRefGoogle Scholar
  40. 40.
    Okajima, F., Biochim. Biophys. Acta, 2002, vol. 1582, pp. 132–137.CrossRefGoogle Scholar
  41. 41.
    Soltau, I., Mudersbach, E., Geissen, M., Schwedhelm, E., Winkler, M.S., Geffken, M., Peine, S., Schoen, G., Debus, E.S., Larena-Avellaneda, A., and Daum, G., PLoS One, 2016, vol. 11, no. 12, e0168302.  https://doi.org/10.1371/journal.pone.0168302 CrossRefGoogle Scholar
  42. 42.
    Fukuda, Y., Kihara, A., and Igarashi, Y., Biochem. Biophys. Res. Commun., 2003, vol. 309, pp. 155–160.CrossRefGoogle Scholar
  43. 43.
    Jin, Z.-Q., Goetzl, E.J., and Karliner, J.S., Circulation, 2004, vol. 110, pp. 1980−1989.CrossRefGoogle Scholar
  44. 44.
    Jin, Z.-Q. and Karliner, J.S., Cardiovasc. Res., 2006, vol. 71, pp. 725–734.CrossRefGoogle Scholar
  45. 45.
    Bandhuvula, P., Honbo, N., Wang, G.-Y., et al., Am. J. Physiol. Heart Circ. Physiol., 2011, vol. 300, pp. H1753–H1761.CrossRefGoogle Scholar
  46. 46.
    Karliner, J.S., Honbo, N., Summers, K., Gray, M.O., and Goetzl, E.J., J. Mol. Cell. Cardiol., 2001, vol. 33, pp. 1713–1717.CrossRefGoogle Scholar
  47. 47.
    Lecour, S., Smith, R.M., Woodward, B., Opie, L.H., Rochette, L., and Sack, M.N., J. Mol. Cell. Cardiol., 2002, vol. 34, pp. 509–518.CrossRefGoogle Scholar
  48. 48.
    Knapp, M., Zendzian-Piotrowska, M., Kurek, K., and Błachnio-Zabielska, A., Lipids, 2012, vol. 47, pp. 847–853.  https://doi.org/10.1007/s11745-012-3694-x CrossRefGoogle Scholar
  49. 49.
    Knapp, M., Baranowski, M., Czarnowski, D., et al., Med. Sci. Monit., 2009, vol. 15, pp. CR490–CR493.Google Scholar
  50. 50.
    Knapp, M., Lisowska, A., Zabielski, P., Musial, W., and Baranowski, M., Prostaglandins Other Lipid Mediat., 2013, vol. 106, pp. 53–61.CrossRefGoogle Scholar
  51. 51.
    Cannavo, A., Rengo, G., Liccardo, D., Pagano, G., Zincarelli, C., DeAngelis, M.C., et al., Circulation, 2013, vol. 128, pp. 1612–1622.  https://doi.org/10.1161/CIRCULATIONAHA.113.002659 CrossRefGoogle Scholar
  52. 52.
    Cannavo, A., Liccardo, D., Komici, K., et al., Front. Pharmacol., 2017, vol. 8, 556.  https://doi.org/10.3389/fphar.2017.00556 CrossRefGoogle Scholar
  53. 53.
    Argraves, K.M. and Argraves, W.S., J. Lipid Res., 2007, vol. 48, pp. 2325–2333.CrossRefGoogle Scholar
  54. 54.
    Murata, N., Sato, K., Kon, J., et al., Biochem. J., 2000, vol. 352, pp. 809–815.CrossRefGoogle Scholar
  55. 55.
    Zhang, B., Tomura, H., Kuwabara, A., et al., Atherosclerosis, 2005, vol. 178, pp. 199–205.CrossRefGoogle Scholar
  56. 56.
    Christoffersen, C., Obinata, H., Kumaraswamy, S.B., Galvani, S., et al., Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 9613–9618.CrossRefGoogle Scholar
  57. 57.
    Means, C.K. and Brown, J.H., Cardiovasc. Res., 2009, vol. 82, pp. 193–200.CrossRefGoogle Scholar
  58. 58.
    Zhang, J., Honbo, N., Goetzl, E.J., et al., Am. J. Physiol. Heart Circ. Physiol., 2007, vol. 293, pp. H3150–H5158.CrossRefGoogle Scholar
  59. 59.
    Jin, Z.Q, Zhou, H.Z., Zhu, P., et al., Am. J. Physiol. Heart Circ. Physiol., 2002, vol. 282, pp. H1970–H1977.CrossRefGoogle Scholar
  60. 60.
    Vessey, D.A., Kelley, M., Li, L., et al., Med. Sci. Monit., 2006, vol. 12, pp. BR318–BR324.Google Scholar
  61. 61.
    Igarashi, J. and Michel, T., Cardiovasc. Res., 2009, vol. 82, pp. 212–220.  https://doi.org/10.1093/cvr/cvp064 CrossRefGoogle Scholar
  62. 62.
    Murata, N., Sato, K., Kon, J., Tomura, H., Yanagita, M., Kuwabara, A., et al., Biochem. J., 2000, vol. 352, pp. 809–815.  https://doi.org/10.1042/bj3520809 CrossRefGoogle Scholar
  63. 63.
    Levkau, B., Front. Pharmacol., 2015, vol. 6, 243.  https://doi.org/10.3389/fphar.2015.00243 CrossRefGoogle Scholar
  64. 64.
    Theilmeier, G., Schmidt, C., Herrmann, J., Keul, P., Schafers, M., Herrgott, I., Mersmann J., Larmann, J., Hermann, S., Stypmann, J., Schober, O., Hil-debrand, R., Schulz, R., Heusch, G., Haude, M., et al., Circulation, 2006, vol. 114, pp. 1403–1409.CrossRefGoogle Scholar
  65. 65.
    Feuerborn, R., Becker, S., Poti, F., Nagel, P., Brodde, M., Schmidt, H., Christoffersen, C., Ceglarek, U., Burkhardt, R., and Nofer, J.R., Atherosclerosis, 2017, vol. 257, pp. 29–37.  https://doi.org/10.1016/j.atherosclerosis.2016.12.009 CrossRefGoogle Scholar
  66. 66.
    Nofer, J.R., van der Giet, M., Tolle, M., Wolinska, I., von Wnuck Lipinski, K., Baba, H.A., Tietge, U.J., Godecke, A., Ishii, I., Kleuser, B., Schafers, M., Fobker, M., Zidek, W., Assmann, G., Chun, J., and Levkau, B., J. Clin. Invest., 2004, vol. 113, pp. 569–581.CrossRefGoogle Scholar
  67. 67.
    Sattler, K.J., Elbasan, S., Keul, P., Elter-Schulz, M., Bode, C., Graler, M.H., Brocker-Preuss, M., Budde, T., Erbel, R., Heusch, G., and Levkau, B., Basic Res. Cardiol., 2010, vol. 105, pp. 821–832.CrossRefGoogle Scholar
  68. 68.
    Okajima, F., Biochim. Biophys. Acta, 2002, vol. 1582, pp. 132–137.CrossRefGoogle Scholar
  69. 69.
    Reddy, S.T., Wadleigh, D.J., Grijalva, V., Ng, C., Hama, S., Gangopadhyay, A., Shih, D.M., Lusi, A.J., et al., Arterioscler. Thromb. Vasc. Biol., 2001, vol. 21, pp. 542–547.CrossRefGoogle Scholar
  70. 70.
    Aviram, M., Eur. J. Clin. Chem. Clin. Biochem., 1996, vol. 34, pp. 599–608.Google Scholar
  71. 71.
    Clay, H., Wilsbacher, L.D., Wilson, S.J., Duong, D.N., McDonald, M., Lam, I., et al., Dev. Biol., 2016, vol. 418, pp. 157–165. doi 2016.06. 024 https://doi.org/10.1016/j.ydbio
  72. 72.
    Brait, V.H., Tarrasón, G., Gavaldà, A., Godessart, N., and Planas, A.M., Stroke, 2016, vol. 47, pp. 3053–3056.  https://doi.org/10.1161/STROKEAHA.116.015371 CrossRefGoogle Scholar
  73. 73.
    Hofmann, U., Burkard, N., Vogt, C., Thoma, A., Frantz, S., Ertl, G., et al., Cardiovasc. Res., 2009, vol. 83, pp. 285–293. doi https://doi.org/10.1093/cvr/cvp137 CrossRefGoogle Scholar
  74. 74.
    Egom, E.E., Ke, Y., Musa, H., Mohamed, T.M., Wang, T., Cartwright, E., et al., J. Mol. Cell. Cardiol., 2010, vol. 48, pp. 406–414.  https://doi.org/10.1016/j.yjmcc.2009.10.009 CrossRefGoogle Scholar
  75. 75.
    Santos-Gallego, C.G., Vahl, T.P., Goliasch, G., Picatoste, B., Arias, T., Ishikawa, K., et al., Circulation, 2016, vol. 133, pp. 954–966.  https://doi.org/10.1161/CIRCULATIONAHA.115.012427 CrossRefGoogle Scholar
  76. 76.
    Goltz, D., Huss, S., Ramadori, E., Büttner, R., Diehl, L., and Meyer, R., Clin. Exp. Pharmacol. Physiol., 2015, vol. 42, pp. 1168–1177.  https://doi.org/10.1111/1440-1681.12465 CrossRefGoogle Scholar
  77. 77.
    Means, C.K., Xiao, C.Y., Li, Z., Zhang, T., Omens, J.H., Ishii, I., et al., Am. J. Physiol. Heart. Circ. Physiol., 2007, vol. 292, pp. H2944–H2951.  https://doi.org/10.1152/ajpheart.01331.2006 CrossRefGoogle Scholar
  78. 78.
    Sugahara, K., Maeda, Y., Shimano, K., Mogami, A., Kataoka, H., Ogawa, K., et al., Br. J. Pharmacol., 2017, vol. 174, pp. 15–27.  https://doi.org/10.1111/bph.13641 CrossRefGoogle Scholar
  79. 79.
    Gundewar, S. and Lefer, D.J., Biochim. Biophys. Acta., 2008, vol. 1780, pp. 571–576.CrossRefGoogle Scholar
  80. 80.
    Brait, V.H., Tarrasón, G., Gavaldà, A., Godessart, N., and Planas, A.M., Stroke, 2016, vol. 47, pp. 3053–3056.  https://doi.org/10.1161/STROKEAHA.116.015371 CrossRefGoogle Scholar
  81. 81.
    Billich, A. and Baumruker, T., Subcell. Biochem., 2008, vol. 49, pp. 487–522.CrossRefGoogle Scholar
  82. 82.
    Spijkers, L.J.A., van den Akker, R.F.P., Janssen, B.J.A., Debets, J.J., De Mey, J.G., Stroes, E.S., et al., PLoS One, 2011, vol. 6, e21817.  https://doi.org/10.1371/journal.pone.0021817 CrossRefGoogle Scholar
  83. 83.
    Spijkers, L.J.A., Janssen, B.J.A., Nelissen, J., Meens, M.J., Wijesinghe, D., Chalfant, C.E., et al., PLoS One, 2011, vol. 6, e29222.  https://doi.org/10.1371/journal.pone.0029222 CrossRefGoogle Scholar
  84. 84.
    Fenger, M., Linneberg, A., Jorgensen, T., Madsbad, S., Sobye, K., Eugen-Olsen, J., and Jeppesen, J., BMC Genet., 2011, vol. 12, 44.CrossRefGoogle Scholar
  85. 85.
    Gulati, S., Liu, Y., Munkacsi, A.B., Wilcox, L., and Sturley, S.L., Prog. Lipid Res., 2010, vol. 49, pp. 353–365.  https://doi.org/10.1016/j.plipres.2010.03.003 CrossRefGoogle Scholar
  86. 86.
    Jin, S., Zhou, F., Katirai, F., and Li, P.-L., Antioxid. Redox Signal., 2011, vol. 15, pp. 1043–1083.  https://doi.org/10.1089/ars.2010.3619 CrossRefGoogle Scholar
  87. 87.
    Megha and London, E., J. Biol. Chem., 2004, vol. 279, pp. 997–1004.Google Scholar
  88. 88.
    Slotte, J.P. and Bierman, E.L., Biochem. J., 1988, vol. 250, pp. 653–658.CrossRefGoogle Scholar
  89. 89.
    Marmillot, P., Patel, S., and Lakshman, M.R., Metabolism, 2007, vol. 56, pp. 251–259.CrossRefGoogle Scholar
  90. 90.
    Leventhal, A.R., Chen, W., Tall, A.R., and Tabas, I., J. Biol. Chem., 2001, vol. 276, pp. 44 976–44 983.CrossRefGoogle Scholar
  91. 91.
    Subbaiah, P.V., Gesquiere, L.R., and Wang, K., J. Lipid Res., 2005, vol. 46, pp. 2699–2705.CrossRefGoogle Scholar
  92. 92.
    Merril, A.H., Jr., Sullard, M.C., Allegood, J.C., Kelly, S., and Wang, E., Methods, 2005, vol. 36, pp. 207–224.CrossRefGoogle Scholar
  93. 93.
    Hinterwirth, H., Stegemann, C., and Mayr, M., Circ. Cardiovasc. Genet., 2014, vol. 27, pp. 941–954.  https://doi.org/10.1161/CIRCGENETICS.114.000 CrossRefGoogle Scholar
  94. 94.
    Ellims, A.H., Wong, G., Weir, J.M., Lew, P., Meikle, P.J., and Taylor, A.J., Eur. Heart J. Cardiovasc. Imaging, 2014, vol. 15, pp. 908–916.  https://doi.org/10.1093/ehjci/jeu033 CrossRefGoogle Scholar
  95. 95.
    Tham, Y.K., Huynh, K., Mellett, N.A., Henstridge, D.C., Kiriazis, H., Ooi, J.Y.Y., Matsumoto, A., Patterson, N.L., Sadoshima, J., Meikle, P.J., and McMullen, J.R., Biochim. Biophys. Acta, 2018, vol. 1863, pp. 219–234.CrossRefGoogle Scholar
  96. 96.
    Au, A., Cheng, K.K., and Wei, L.K., Adv. Exp. Med. Biol., 2017, vol. 956, pp. 599–613.  https://doi.org/10.1007/5584_2016_79 CrossRefGoogle Scholar
  97. 97.
    Haus, J.M., Kashyap, S.R., Kasumov, T., Zhang, R., Kelly, K.R., Defronzo, R.A., and Kirwan, J.P., Diabetes, 2009, vol. 58, pp. 337–343.  https://doi.org/10.2337/db08-1228 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Alessenko
    • 1
    Email author
  • A. T. Lebedev
    • 2
  • I. N. Kurochkin
    • 2
  1. 1.Institute of Biochemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations