Advertisement

The Effect of the Primula Veris Solid Herbal Extract on the Development of Oxidative Stress and the Functional State of Cardiomyocyte Mitochondria of Rats with Experimental Chronic Heart Failure

  • T. A. Popova
  • E. A. Muzyko
  • M. V. Kustova
  • M. A. Bychenkova
  • V. N. Perfilova
  • I. I. Prokofiev
  • M. A. Samoylova
  • I. N. Tyurenkov
  • G. M. Latypova
  • V. A. Kataev
Article
  • 3 Downloads

Abstract

Experimental chronic heart failure (CHF), caused by intraperitoneal administration of L-isoproterenol (2.5 mg/kg twice a day for 21 days), promotes uncoupling of respiration and oxidative phosphorylation in rat cardiac mitochondria. The rate of mitochondrial oxygen consumption in the metabolic state V3 by Chance in animals with CHF decreased by 53.3% (p < 0.05) with malate (as an oxidation substrate feeding complex I of the electron transport chain (ETC)), by 70.6% (p < 0.05) with succinate (complex II substrate) and by 63.6% (p < 0.05) when malate and succinate were added simultaneously. The respiratory control ratio (RCR) of mitochondria from CHF rats demonstrated a significant decrease for complex I substrate (2.3-fold), complex II substrate (2.5-fold) and 2.6-fold in the case of simultaneous addition of complex I and II substrates and 2.6 times as compared to cardiac mitochondria of intact animals. Mitochondrial dysfunction in experimental CHF is evidently associated with the development of oxidative stress: the malondialdehyde (MDA) content in the group of CHF rats was higher by 54.7% (p < 0.05), as compared with intact animals. The activity of superoxide dismutase (SOD) and catalase was lower by 17.5% (p < 0.05), and by 18.4%, respectively, than in the intact group. Administration of the Primula veris solid herbal extract (PVSHE) attenuated the development of mitochondrial dysfunction in rats with experimental CHF as evidenced by an increase in the V3 respiration using complex I (77.2%; p < 0.05), complex II (114.6%; p < 0.05) substrates and a 1.7- and 2-fold increase in the RCR value (p < 0.05) determined versus negative control with complex I and complex II substrates, respectively. Under these conditions the MDA concentration was lower by 15.7% (p < 0.05), while SOD activity was higher by 56.3% (p < 0.05).

Keywords:

chronic heart failure mitochondrial dysfunction oxidative stress Primula veris solid herbal extract 

Notes

REFERENCES

  1. 1.
    Aiba, T. and Tomaselli, G.F., Curr. Opin. Cardiol., 2010, vol. 25, pp. 29–36. doi 10.1097/HCO. 0b013e328333d3d6CrossRefGoogle Scholar
  2. 2.
    Moris, D., Spartalis, M., Tzatzaki, E., Spartalis, E., Karachaliou, G.S., Triantafyllis, A.S., Karaola-nis, G.I., Tsilimigras, D.I., and Theocharis, S., Ann. Transl. Med., 2017, vol. 5, no. 16, p. 324. doi 10.21037/ atm.2017.06.17CrossRefGoogle Scholar
  3. 3.
    Santos, C.X., Raza, S., and Shah, A.M., Int. J. Biochem. Cell Biol., 2016, vol. 74, pp. 145–151. doi 10.1016/j.biocel.2016.03.002CrossRefGoogle Scholar
  4. 4.
    Bayeva, M., Gheorghiade, M., and Ardehali, H., J. Am. Coll. Cardiol., 2013, vol. 61, no. 6, pp. 599–610. doi 10.1016/j.jacc.2012.08.1021CrossRefGoogle Scholar
  5. 5.
    Goh, K.Y., Qu, J., Hong, H., Liu, T., Dell’Italia, L.J., Wu, Y., O’Rourke, B., and Zhou, L., Cardiovasc. Res., 2016, vol. 109, no. 1, pp. 79–89. doi 10.1093/ cvr/cvv230CrossRefGoogle Scholar
  6. 6.
    Tsutsui, H., Kinugawa, S., and Matsushima, S., Am. J. Physiol. Heart Circ. Physiol., 2011, vol. 301, no. 6, pp. 2181–2190. doi 10.1152/ajpheart.00554.2011CrossRefGoogle Scholar
  7. 7.
    Bayeva, M. and Ardehali H., Curr. Hypertens. Rep., 2010, vol. 2, pp. 426–432. doi 10.1007/s11906-010-0149-8CrossRefGoogle Scholar
  8. 8.
    Lu, Z., Xu, X., Hu, X., Fassett, J., Zhu, G., Tao, Y., Li, J., Huang, Y., Zhang, P., Zhao, B., and Chen, Y., Antioxid. Redox. Signal., 2010, vol. 3, pp. 1011–1022. doi 10.1089/ars.2009.2940CrossRefGoogle Scholar
  9. 9.
    Siwik, D.A. and Colucci, W.S., Heart Fail. Rev., 2004, vol. 9, no. 1, pp. 43–51. doi 10.1023/ B:HREV.0000011393.40674.13CrossRefGoogle Scholar
  10. 10.
    Latypova, G.M., Bubenchikova, V.N., Kataev, V.A., and Romanova, Z.R., Rasteniya roda pervotsvet kak perspektivnye istochniki profilakticheskikh i lekarstvennykh sredstv (Plants of the Genus Primrose as Promising Sources of Preventive and Medicinal Products), Ufa: Zdravookhraneniye Bashkortostana, 2011.Google Scholar
  11. 11.
    Gosudarstvennaya farmakopeya SSSR: Vyp. 2. Obshchiye metody analiza. Lekarstvennoe rastitel’noe syr’e/MZ SSSR (State Pharmacopoeia of the USSR: Vol. 2. General Methods of Analysis. Medicinal Plant Raw Materials/Ministry of Public Health of the USSR), 11 ed. (supplemented), Moscow: Meditsina, 1989.Google Scholar
  12. 12.
    Fakhrutdinov, R.R. and Likhovskikh, Khemilyuminestsentnye metody issledovaniya svobodno-radikal’nogo okisleniya v biologii i meditsine (Chemiluminescent Methods for Studying Free Radical Oxidation in Biology and Medicine), Ufa, 1995.Google Scholar
  13. 13.
    Shibata, M., Takeshita, D., Obata, K., Mitsuyama, S., Ito, H., Zhang, G.X., and Takaki, M., Am. J. Physiol. Heart Circ. Physiol., 2011, vol. 301, no. 5, pp. 2154–2160. doi 10.1152/ajpheart.00483.2011CrossRefGoogle Scholar
  14. 14.
    Brand, M.D. and Nicholls, D.G., Biochem. J., 2011, vol. 435, pp. 297–312. doi 10.1042/BJ20110162CrossRefGoogle Scholar
  15. 15.
    Stal’naya, I.D. and Garishvili, T.G., in Sovremennye metody v biokhimii (Modern Methods in Biochemistry), Moscow: Meditsina, 1977, pp. 66–68.Google Scholar
  16. 16.
    Moin, V.M., Lab. Delo, 1986, no. 12, pp. 12–16.Google Scholar
  17. 17.
    Korolyuk, M.A., Ivanova, L.I., and Maiorova, I.G., Lab. Delo, 1988, no. 1, pp. 16–19.Google Scholar
  18. 18.
    Kostyuk, V.A., Potapovich, A.I., and Kovaleva, Zh.V., Vopr. Med. Khim., 1990, vol. 36, no. 2, pp. 88–91.Google Scholar
  19. 19.
    Heather, L.C., Cole, M.A., Tan, J.J., Ambrose, L.J., Pope, S., Abd-Jamil, A.H., Carter, E.E., Dodd, M.S., Yeoh, K.K., Schofield, C.J., and Clarke, K., Basic Res. Cardiol., 2012, vol. 107, no. 3, 268. doi 10.1007/s00395-012-0268-2CrossRefGoogle Scholar
  20. 20.
    Dai, D.F., Chiao, Y.A., Martin, G.M., Marcinek, D.J., Basisty, N., Quarles, E.K., and Rabinovitch, P.S., Prog. Mol. Biol. Transl. Sci., 2017, vol. 146, pp. 203–241. doi 10.1016/bs.pmbts.2016.12.015CrossRefGoogle Scholar
  21. 21.
    Aimo, A., Borrelli, C., Vergaro, G., Piepoli, M.F., Caterina, A.R., Mirizzi, G., Valleggi, A., Raglianti, V., Passino, C., Emdin, M., and Giannoni, A., Curr. Pharm. Des., 2016, vol. 22, no. 31, pp. 4807–4822.CrossRefGoogle Scholar
  22. 22.
    Stepanov, A.V., Baidyuk, E.V., and Sakuta, G.A., Tsitologiya, 2016, vol. 58, no. 11, pp. 875–882.Google Scholar
  23. 23.
    Bonafede, R.J., Calvo, J.P., Fausti, J.M.V., Puebla, S., Gambarte, A.J., and Manucha, W., Clin. Investig. Arterioscler., 2017, vol. 29, no. 3, pp. 120–126. doi 10.1016/j.arteri.2016.12.002Google Scholar
  24. 24.
    Maietti, A., Brighenti, V., Bonetti, G., Tedeschi, P., Prencipe, F.P., Benvenuti, S., Brandolini, V., and Pellati, F., J. Pharm. Biomed. Anal., 2017, vol. 142, pp. 28–34. doi 10.1016/j.jpba.2017.04.043CrossRefGoogle Scholar
  25. 25.
    Bazarnova Yu.G. and Veretnov, B.Ya., Vopr. Pitaniya, 2004, vol. 73, no. 3, pp. 35–42.Google Scholar
  26. 26.
    Makarova, M.N., Makarov, V.G., Stankevich, N.M., Yermakov, S.B., and Yashakina, I.A., Rastitel’nye Resursy, 2005, no. 2, pp. 106–115.Google Scholar
  27. 27.
    Wang, H.H., Zeng, J., Wang, H.Z., Jiang, Y.X., Wang, J., and Zhou, P.P., Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2015, vol. 31, no. 3, pp. 201–206.Google Scholar
  28. 28.
    Statsenko, M.E., Turkina, S.V., Tyshchenko, I.A., Fabritskaya, S.V., and Poletayeva, L.V., Farmateka, 2017, no. 6, pp. 75–80.Google Scholar
  29. 29.
    Kukes, V.G., Zhernakova, N.I., Gorbach, T.V., Romashchenko, O.V., and Rumbesht, V.V., Vestnik RAMN, 2013, no. 1, pp. 42–46.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. A. Popova
    • 1
  • E. A. Muzyko
    • 1
  • M. V. Kustova
    • 1
  • M. A. Bychenkova
    • 2
  • V. N. Perfilova
    • 1
  • I. I. Prokofiev
    • 1
  • M. A. Samoylova
    • 1
  • I. N. Tyurenkov
    • 1
  • G. M. Latypova
    • 2
  • V. A. Kataev
    • 2
  1. 1.Volgograd State Medical University (VSTMU)VolgogradRussia
  2. 2.Bashkir State Medical UniversityUfaRussia

Personalised recommendations