Effect of Noradrenaline on the Kinetics of Evoked Acetylcholine Secretion in Mouse Neuromuscular Junction

  • A. N. Tsentsevitsky
  • I. V. KovyazinaEmail author
  • E. A. Bukharaeva
  • E. E. Nikolsky


In contrast to frog neuromuscular synapses, where noradrenaline (norepinephrine) and its analogues caused synchronization of the acetylcholine release process, in mouse diaphragm endplates noradrenaline increased the degree of asynchrony of neurosecretion. The effect of noradrenaline on release timing persisted at different levels of external calcium ions (0.25–2.0 mM) and was abolished in presence of both α- and β‑adrenoblockers phentolamine and propranolol. The computer reconstruction of multiquantal endplate currents accounting for experimentally observed modification of release kinetics under noradrenaline showed that the rise time of postsynaptic response changes to a greater extent than the amplitude and falling phase of the multiquantal responses. We conclude that there exists a principal difference in the action of noradrenaline in the cholinergic neuromuscular synapses of warm-blooded and cold-blooded animals that can be accounted for by the differences in the type of adrenoreceptors involved in the modulation of synaptic transmission and/or in the involvement of distinct intracellular pathways triggered by receptor activation.


neuromuscular junction endplate current noradrenaline acetylcholine release timing 



The authors thank Dr. Victor Ilyin for critical reading and helpful comments on the manuscript. The work was supported by the Russian Science Foundation (project no. 18-15-00046).


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the Commission on Bioethics of Kazan State Medical University.


  1. 1.
    Bowman W., Nott M. 1969. Actions of sympathomimetic amines and their antagonists on skeletal muscle. Pharmacol. Rev. 21, 27–72.Google Scholar
  2. 2.
    Fellenius E., Hedberg R., Holmberg E., Waldeck B. 1980. Functional and metabolic effects of terbutaline and propranolol in fast- and slow-contracting skeletal muscle in vitro. Acta Physiol. Scand. 109, 89–95.CrossRefGoogle Scholar
  3. 3.
    Cairns S., Borrani, F. 2015. β-Adrenergic modulation of skeletal muscle contraction: Key role of excitation–contraction coupling. J. Physiol. 593, 4713–4727.CrossRefGoogle Scholar
  4. 4.
    Moravec J., Melichar I., Jansky L., Vyskocil F. 1973. Effect of hibernation and noradrenaline on the resting state of neuromuscular junction of golden hamster (Mesocricetus auratus). Pflugers Archiv. 345, 93–106.CrossRefGoogle Scholar
  5. 5.
    Wessler I. 1992. Acetylcholine at motor nerves: Storage, release, and presynaptic modulation by autoreceptors and adrenoceptors. Int. Rev. Neurobiol. 34, 283–384.CrossRefGoogle Scholar
  6. 6.
    Khan M., Lustrinod D., Silveira W.A., Wild F., Straka T., Issop Y., O’Connor E., Cox D., Reischl M., Marquardt T., Labeit D., Labeit S, Benoit E., Molgó J., Lochmüller H., Witzemann V., Kettelhut I.C., Navegantes L.C., Pozzan T., Rudolf R. 2016. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. Proc. Natl. Acad. Sci. USA. 113, 746–750.CrossRefGoogle Scholar
  7. 7.
    Kuba K., Tomita T. 1972. Effects of noradrenaline on miniature end-plate potentials and on end-plate potential. J. Theor. Biol. 36, 81–88.CrossRefGoogle Scholar
  8. 8.
    Jenkinson D.H., Stamenovi B.A., Whitaker B. 1968. The effect of noradrenaline on the end-plate potential in twitch fibres of the frog. J. Physiol. 195, 743–754.CrossRefGoogle Scholar
  9. 9.
    Lim S., Muir T. 1983. Microelectrode recording of the effects of agonists and antagonists on alpha-adrenoceptors on rat somatic nerve terminals. Br. J. Pharmacol. 80, 41–46.CrossRefGoogle Scholar
  10. 10.
    Wessler J., Anschuetz S. 1988. Beta-adrenoreceptor stimulation enhances transmitter output from the rat phrenic nerve. Br. J. Pharmacol. 94, 669–674.CrossRefGoogle Scholar
  11. 11.
    Yawo H. 1996. Noradrenaline modulates transmitter release by enhancing the Ca2+ sensitivity of exocytosis in the chick ciliary presynaptic terminal. J Physiol. Lond. 493, 385–391.CrossRefGoogle Scholar
  12. 12.
    Van der Kloot W., Van der Kloot T.E. 1986. Catecholamines, insulin and ACTH increase quantal size at the frog neuromuscular junction. Brain Research. 376, 378–381.CrossRefGoogle Scholar
  13. 13.
    Koketsu K., Miyagawa M., Akasu T., 1982. Catecholamine modulates nicotinic ACh-receptor sensitivity. Brain Research. 236, 487–491.CrossRefGoogle Scholar
  14. 14.
    Sabatini W., Regehr W. 1999. Timing of synaptic transmission. Annu. Rev. Physiol. 61, 521–542.CrossRefGoogle Scholar
  15. 15.
    Lin J.-W., Faber S. 2002. Modulation of synaptic delay during synaptic plasticity. Trends Neurosci. 25, 449–455.CrossRefGoogle Scholar
  16. 16.
    Bukharaeva E., Nikolskii E. 2012. Changes in the kinetics of evoked secretion of transmitter quanta – an effective mechanism modulating the synaptic transmission of excitation. Neurosci. Behav. Physiol. 42, 153–160.CrossRefGoogle Scholar
  17. 17.
    Bukcharaeva E., Kim K., Moravec J., Nikolsky E., Vyskocil F. 1999. Noradrenaline synchronizes evoked quantal release at frog neuromuscular junctions. J. Physiol. Lond. 517, 879–888.CrossRefGoogle Scholar
  18. 18.
    Bukharaeva E., Samigullin D., Nikolsky E., Vyskocil F. 2002. Protein kinase A cascade regulates quantal release dispersion at frog muscle endplate. J. Physiol. 538, 837–848.CrossRefGoogle Scholar
  19. 19.
    Kovyazina I., Tsentsevitsky A., Nikolsky E., Bukharaeva E.A. 2010. Kinetics of acetylcholine quanta release at the neuromuscular junction during high-frequency nerve stimulation. Eur. J. Neurosci. 32, 1480–1489.CrossRefGoogle Scholar
  20. 20.
    Tsentsevitsky A., Kovyazina I., Nikolsky E., Bukharaeva E., Giniatullin R. 2013. Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction. Neurosci. 248, 699–707.CrossRefGoogle Scholar
  21. 21.
    Kozachuk W., Phillis J. 1977. The role of calcium ions in noradrenaline-facilitated hyperpolarization on frog skeletal muscle. Gen. Pharmacol. 9, 235–238.CrossRefGoogle Scholar
  22. 22.
    Bergman H., Glusman S., Harris-Warrick R.M., Kravitz E.A., Nussinovitch I., Rahamimoff R. 1991. Noradrenaline augments tetanic potentiation of transmitter release by a calcium dependent process. Brain Res. 214, 200–204.CrossRefGoogle Scholar
  23. 23.
    Dodge F., Rahamimoff R. 1967. Cooperative action of calcium ions in transmitter release at the neuromuscular junctions. J. Physiol. Lond. 193, 419–432.CrossRefGoogle Scholar
  24. 24.
    Vasin A., Samigullin D., Bukharaeva E. 2010. The role of calcium in modulation of the kinetics of synchronous and asynchronous quantal release at the neuromuscular junction. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 4, 77–84.Google Scholar
  25. 25.
    Fitzgerald P.J. 2013. Elevated norepinephrine may be an etiological factor in a wide range of diseases: Age-related macular degeneration, systemic lupus erythematosus, atrial fibrillation, metabolic syndrome. Med. Hypotheses. 80, 558–563.CrossRefGoogle Scholar
  26. 26.
    Ghasemi M., Mehranfard N. 2018. Mechanisms underlying anticonvulsant and proconvulsant actions of norepinephrine. Neuropharmacology. 137, 297–308.CrossRefGoogle Scholar
  27. 27.
    Ghazanfari N., Morsch M., Tse N., Reddel S.W., Phillips W.D. 2014. Effects of the ß2-adrenoceptor agonist, albuterol, in a mouse model of anti-MuSK myasthenia gravis. PLoS ONE. 9 (2), e87840. doi 10.1371Google Scholar
  28. 28.
    Paik H., Chung A., Park H. 2015. Repurpose terbutaline sulfate for amyotrophic lateral sclerosis using electronic medical records. Sci. Rep. 5, 8580–8585.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Tsentsevitsky
    • 1
  • I. V. Kovyazina
    • 1
    Email author
  • E. A. Bukharaeva
    • 1
  • E. E. Nikolsky
    • 2
    • 3
  1. 1.Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of the Russian Academy of SciencesKazanRussia
  2. 2.Kazan Medical UniversityKazanRussia
  3. 3.Kazan Federal UniversityKazanRussia

Personalised recommendations