Advertisement

The Role of Transmembrane Glycoproteins, Integrins and Serpentines in Platelet Adhesion and Activation

  • A. N. Sveshnikova
  • A. V. Belyaev
  • M. A. Panteleev
  • D. Y. NechipurenkoEmail author
REVIEWS
  • 13 Downloads

Abstract

Platelets are unique cells of human body: they lack nucleus, are rather small in size (1–2 μm) and involved in several physiological functions, including hemostasis, immunity and angiogenesis. Platelets play a key role in the initiation of thrombosis upon injury of the blood vessels of the arterial bed, in which blood flows with high shear rates are observed. According to the generally accepted concepts, the reaction of platelets to endothelial injury at local shear rates of more than 1000 s–1 is the primary binding of the GPIb-IX-V receptor complex glycoproteins with von Willebrand factor, a large multimeric blood protein which can specifically bind to collagen fibers. For further performance of their functions, and first of all, for stable attachment to the injured surface, platelet has to be activated. There are more than ten types of receptors on the platelet membrane, which trigger several cascades of intracellular signaling that leads to the restructuring of the cytoskeleton, granule secretion and activation of integrins, which provide the ability of platelets to strong adhesion and aggregation. This review is focused on the biophysical aspects of the interaction of transmembrane glycoproteins and integrins with extracellular ligands, as well as modern ideas about the mechanisms of platelet activation that is necessary to stabilize their primary adhesion and aggregation.

Keywords:

platelet adhesion glycoproteins integrins serpentines 

Notes

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project nos. 16-04-01163 and 16-31-60061-mol_a_dk), by the grants of the President of Russian Federation (project nos. MK-2706.2017.4 and MD-229.2017.4), and by the scholarship grant of the President of Russian Federation (project no. SP-2427.2015.4).

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Esmon C. 2009. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev. 23, 225–229.CrossRefGoogle Scholar
  2. 2.
    Nieswandt B.,Watson S. 2003. Platelet-collagen interaction: Is GPVI the central receptor? Blood. 102, 449–461.CrossRefGoogle Scholar
  3. 3.
    Best D., Senis Y., Jarvis G., Eagleton H., Roberts D., Saito T., Jung S., Moroi M., Harrison P., Green F., Watson S. 2003. GPVI levels in platelets: Relationship to platelet function at high shear. Blood. 102, 2811–2818.CrossRefGoogle Scholar
  4. 4.
    Herr A., Farndale R. 2009. Structural insights into the interactions between platelet receptors and fibrillar collagen. J. Biol. Chem. 284, 19781–19785.CrossRefGoogle Scholar
  5. 5.
    Jung S., Takemura Y., Imamura Y., Hayashi T., Adachi E., Moroi M. 2009. Collagen-type specificity of glycoprotein VI as a determinant of platelet adhesion. Platelets. 19, 32–42.CrossRefGoogle Scholar
  6. 6.
    Savage B., Saldívar E., Ruggeri Z. 1996. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 84, 289–297.CrossRefGoogle Scholar
  7. 7.
    Miura Y., Takahashi T., Jung S., Moroi M. 2002. Analysis of the interaction of platelet collagen receptor glycoprotein VI (GPVI) with collagen: A dimeric form of GPVI, but not the monomeric form, shows affinity to fibrous collagen. J. Biol. Chem. 277, 46197–46204.CrossRefGoogle Scholar
  8. 8.
    Varga-Szabo D., Pleines I., Nieswandt B. 2008. Cell adhesion mechanisms in platelets. Arterioscler. Thromb. Vasc. Biol. 28, 403–412.CrossRefGoogle Scholar
  9. 9.
    Colace T., Tormoen G., McCarty O., Diamond S. 2013. Microfluidics and coagulation biology. Annu. Rev. Biomed. Eng. 15, 283–303.CrossRefGoogle Scholar
  10. 10.
    Jackson S. 2007. The growing complexity of platelet aggregation. Blood. 109, 5087–5095.CrossRefGoogle Scholar
  11. 11.
    Mody N., King M. 2008. Platelet adhesive dynamics. Part I: Characterization of platelet hydrodynamic collisions and wall effects. Biophys. J. 95, 2539–2555.CrossRefGoogle Scholar
  12. 12.
    Kim J., Zhang C., Zhang X., Springer T. 2010. A mechanically stabilized receptor–ligand flex-bond important in the vasculature. Nature. 466, 992–995.CrossRefGoogle Scholar
  13. 13.
    Westein E., van der Meer A., Kuijpers M., Frimat J., van den Berg A., Heemskerk J. 2013. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc. Natl. Acad. Sci. USA. 110, 1357–1362.CrossRefGoogle Scholar
  14. 14.
    Singh I., Themistou E., Porcar L., Neelamegham S. 2009. Fluid shear induces conformation change in human blood protein von Willebrand factor in solution. Biophys. J. 96, 2313–2320.CrossRefGoogle Scholar
  15. 15.
    Zhang X., Halvorsen K., Zhang C., Wong W., Springer T. 2009. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science. 324, 1330–1334.CrossRefGoogle Scholar
  16. 16.
    Schneider S., Nuschele S., Wixforth A., Gorzelanny C., Alexander-Katz A., Netz R., Schneider M. 2007. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl. Acad. Sci. USA. 104, 7899–7903.CrossRefGoogle Scholar
  17. 17.
    Springer T. 2014. Von Willebrand factor, Jedi knight of the bloodstream. Blood. 124, 1412–1425.CrossRefGoogle Scholar
  18. 18.
    Maxwell M., Westein E., Nesbitt W., Giuliano S., Dopheide S., Jackson S. 2007. Identification of a 2‑stage platelet aggregation process mediating shear-dependent thrombus formation. Blood. 109, 566–576.CrossRefGoogle Scholar
  19. 19.
    Arya M., Anvari B., Romo G., Cruz M., Dong J., McIntire L., Moake J., López J. 2002. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: Studies using optical tweezers. Blood. 99, 3971–3977.CrossRefGoogle Scholar
  20. 20.
    Nesbitt W., Westein E., Tovar-Lopez F., Tolouei E., Mitchell A., Fu J., Carberry J., Fouras A., Jackson S. 2009. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15, 665–673.CrossRefGoogle Scholar
  21. 21.
    Baldauf C., Schneppenheim R., Stacklies W., Obser T., Pieconka A., Schneppenheim S., Budde U., Zhou J., Gräter F. 2009. Shear-induced unfolding activates von Willebrand factor A2 domain for proteolysis. J. Thromb. Haemost. 7, 2096–2105.CrossRefGoogle Scholar
  22. 22.
    Goldman A., Cox R., Brenner H. 1967. Slow viscous motion of a sphere parallel to a plane wall-I Motion through a quiescent fluid. Chem. Eng. Sci. 22, 637–651.CrossRefGoogle Scholar
  23. 23.
    Goto S., Salomon D., Ikeda Y., Ruggeri Z. 1995. Characterization of the unique mechanism mediating the shear-dependent binding of soluble von Willebrand factor to platelets. J. Biol. Chem. 270, 23352–23361.CrossRefGoogle Scholar
  24. 24.
    Miura S., Li C., Cao Z., Wang H., Wardell M., Sadler J. 2000. Interaction of von Willebrand factor domain A1 with platelet glycoprotein Ib. J. Biol. Chem. 275, 7539–7546.CrossRefGoogle Scholar
  25. 25.
    Li Z., Delaney M., O’Brien K., Du X. 2010. Signaling during platelet adhesion and activation. Arterioscler. Thromb. Vasc. Biol. 30, 2341–2349.CrossRefGoogle Scholar
  26. 26.
    Varga-Szabo D., Braun A., Nieswandt B. 2009. Calcium signaling in platelets.Thromb. Haemost. 7, 1057–1066.CrossRefGoogle Scholar
  27. 27.
    Heemskerk J., Mattheij N., Cosemans J. 2013. Platelet-based coagulation: Different populations, different functions. J. Thromb. Haemost. 11, 2–16.CrossRefGoogle Scholar
  28. 28.
    Versteeg H., Heemskerk J., Levi M., Reitsma P. 2013. New fundamentals in hemostasis. Physiol. Rev. 93, 327–358.CrossRefGoogle Scholar
  29. 29.
    Sveshnikova A., Ataullakhanov F., Panteleev M. 2015. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1. Mol. Biosyst. 11, 1052–1060.CrossRefGoogle Scholar
  30. 30.
    Shakhidzhanov S., Shaturny V., Panteleev M., Sveshnikova A. 2015. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation. Biochim. Biophys. Acta – Gen. Subj. 1850, 2518–2529.CrossRefGoogle Scholar
  31. 31.
    Obydennyi S., Sveshnikova A., Ataullakhanov F., Panteleev M. 2015. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in single platelets during activation. J. Thromb. Haemost. 13, 649.Google Scholar
  32. 32.
    Kroll M., Hellums J., McIntire L., Schafer A., Moake J. 1996. Platelets and shear stress. Blood. 88, 1525–1541.Google Scholar
  33. 33.
    Andrews R., Arthur J., Gardiner E. 2014. Targeting GPVI as a novel antithrombotic strategy. J. Blood Med. 5, 59–68.Google Scholar
  34. 34.
    Sullam P. 1998. Physical proximity and functional interplay of the glycoprotein Ib–IX–V complex and the Fc receptor Fcgamma RIIA on the platelet plasma membrane. J. Biol. Chem. 273, 5331–5336.CrossRefGoogle Scholar
  35. 35.
    Berndt M., Metharom P., Andrews R. 2014. Primary haemostasis: Newer insights. Haemophilia. 20, 15–22.CrossRefGoogle Scholar
  36. 36.
    Bryckaert M., Rosa J., Denis C., Lenting P. 2015. Of von Willebrand factor and platelets. Cell. Mol. Life Sci. 72, 307–326.CrossRefGoogle Scholar
  37. 37.
    Gu M. 1999. Analysis of the roles of 14-3-3 in the platelet glycoprotein Ib-IX-mediated activation of integrin alphaiibbeta3 using a reconstituted mammalian cell expression model. J. Cell Biol. 147, 1085–1096.CrossRefGoogle Scholar
  38. 38.
    Riba R., Oberprieler N., Roberts W., Naseem K. 2006. Von Willebrand factor activates endothelial nitric oxide synthase in blood platelets by a glycoprotein Ib-dependent mechanism. J. Thromb. Haemost. 4, 2636–2644.CrossRefGoogle Scholar
  39. 39.
    Kasirer-Friede A., Moran B., Nagrampa-Orje J., Swanson K., Ruggeri Z., Schraven B., Neel B., Koretzky G., Shattil S. 2007. ADAP is required for normal alphaIIbbeta3 activation by VWF/GP Ib-IX-V and other agonists. Blood. 109, 1018–1025.CrossRefGoogle Scholar
  40. 40.
    Yin H., Liu J., Li Z., Berndt M., Lowell C., Du X. 2008. Src family tyrosine kinase Lyn mediates VWF/GPIb-IX-induced platelet activation via the cGMP signaling pathway. Blood. 112, 1139–1146.CrossRefGoogle Scholar
  41. 41.
    Kasirer-Friede A., Cozzi M., Mazzucato M., De Marco L., Ruggeri Z., Shattil S. 2004. Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood. 103, 3403–3411.CrossRefGoogle Scholar
  42. 42.
    Nesbitt W., Kulkarni S., Giuliano S., Goncalves I., Dopheide S., Yap C., Harper I., Salem H. H., Jackson S. 2002. Distinct glycoprotein Ib/V/IX and integrin alpha II beta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J. Biol. Chem. 277, 2965–2972.CrossRefGoogle Scholar
  43. 43.
    Ozaki Y., Asazuma N., Suzuki-Inoue K., Berndt M. 2005. Platelet GPIb-IX-V-dependent signaling. J. Thromb. Haemost. 3, 1745–1751.CrossRefGoogle Scholar
  44. 44.
    Nalayanda D., Kalukanimuttam M., Schmidtke D. 2007. Micropatterned surfaces for controlling cell adhesion and rolling under flow. Biomed. Microdevices. 9, 207–214.CrossRefGoogle Scholar
  45. 45.
    Yuan Y., Kulkarni S., Ulsemer P., Cranmer S., Yap C., Nesbitt W., Harper I., Mistry N., Dopheide S., Hughan S., Williamson D., de la Salle C., Salem H., Lanza F., Jackson S. 1999. The von Willebrand factor-glycoprotein Ib/V/IX interaction induces actin polymerization and cytoskeletal reorganization in rolling platelets and glycoprotein Ib/V/IX-transfected cells. J. Biol. Chem. 274, 36241–36251.CrossRefGoogle Scholar
  46. 46.
    Nieswandt B., Varga-Szabo D., Elvers M. 2009. Integrins in platelet activation. J. Thromb. Haemost. 206–209.Google Scholar
  47. 47.
    Grüner S., Prostredna M., Schulte V., Krieg T., Eckes B., Brakebusch C., Nieswandt B. 2003. Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood. 102, 4021–4027.CrossRefGoogle Scholar
  48. 48.
    Moser M., Nieswandt B., Ussar S., Pozgajova M., Fässler R. 2008. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330.CrossRefGoogle Scholar
  49. 49.
    Nieswandt B., Moser M., Pleines I., Varga-Szabo D., Monkley S., Critchley D., Fässler R. 2007. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J. Exp. Med. 204, 3113–3118.CrossRefGoogle Scholar
  50. 50.
    Cifuni S., Wagner D., Bergmeier W. 2008. CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood. 112, 1696–1703.CrossRefGoogle Scholar
  51. 51.
    Manganaro D., Consonni A., Guidetti G., Canobbio I., Visconte C., Kim S., Okigaki M., Falasca M., Hirsch E., Kunapuli S., Torti M. 2015. Activation of phosphatidylinositol 3-kinase β by the platelet collagen receptors integrin α2β1 and GPVI: The role of Pyk2 and c-Cbl. Biochim. Biophys. Acta. 1853, 1879–1888.CrossRefGoogle Scholar
  52. 52.
    Inoue O., Suzuki-Inoue K., Dean W., Frampton J., Watson S. 2003. Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCgamma2. J. Cell Biol. 160, 769–780.CrossRefGoogle Scholar
  53. 53.
    Chen H., Kahn M. 2003. Reciprocal signaling by integrin and nonintegrin receptors during collagen activation of platelets. Mol. Cell. Biol. 23, 4764–4777.CrossRefGoogle Scholar
  54. 54.
    Smith C., Estavillo D., Emsley J., Bankston L., Liddington R., Cruz M. 2000. Mapping the collagen-binding site in the I domain of the glycoprotein Ia/IIa (Integrin 2 1). J. Biol. Chem. 275, 4205–4209.CrossRefGoogle Scholar
  55. 55.
    Nieswandt B., Brakebusch C., Bergmeier W., Schulte V., Bouvard D., Mokhtari-Nejad R., Lindhout T., Heemskerk J., Zirngibl H., Fässler R. 2001. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J. 20, 2120–2130.CrossRefGoogle Scholar
  56. 56.
    Clemetson J., Polgar J., Magnenat E., Wells T., Clemetson K. 1999. The platelet collagen receptor glycoprotein VI Is a member of the immunoglobulin superfamily closely related to Fc R and the natural killer receptors. J. Biol. Chem. 274, 29019–29024.CrossRefGoogle Scholar
  57. 57.
    Tsuji M., Ezumi Y., Arai M., Takayama H. 1997. A novel association of Fc receptor γ-chain with glycoprotein VI and their co-expression as a collagen receptor in human platelets. J. Biol. Chem. 272, 23528–23531.CrossRefGoogle Scholar
  58. 58.
    Bergmeier W., Stefanini L. 2013. Platelet ITAM signaling. Curr. Opin. Hematol. 20, 445–450.CrossRefGoogle Scholar
  59. 59.
    Suzuki-Inoue K., Tulasne D., Shen Y., Bori-Sanz T., Inoue O., Jung S., Moroi M., Andrews R., Berndt M., Watson S. 2002. Association of Fyn and Lyn with the proline-rich domain of glycoprotein VI regulates intracellular signaling. J. Biol. Chem. 277, 21561–21566.CrossRefGoogle Scholar
  60. 60.
    Gibbins J., Okuma M., Farndale R., Barnes M., Watson S. 1997. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor γ-chain. FEBS Lett. 413, 255–259.CrossRefGoogle Scholar
  61. 61.
    Watson S., Herbert J., Pollitt A. 2010. GPVI and CLEC-2 in hemostasis and vascular integrity. J. Thromb. Haemost. 8, 1456–1467.CrossRefGoogle Scholar
  62. 62.
    Schmaier A., Zou Z., Kazlauskas A., Emert-Sedlak L., Fong K., Neeves K., Maloney S., Diamond S. L., Kunapuli S., Ware J., Brass L., Smithgall T., Saksela K., Kahn M. 2009. Molecular priming of Lyn by GPVI enables an immune receptor to adopt a hemostatic role. Proc. Natl. Acad. Sci. USA. 106, 21167–21172.CrossRefGoogle Scholar
  63. 63.
    Mangin P., Nonne C., Eckly A., Ohlmann P., Freund M., Nieswandt B., Cazenave J., Gachet C., Lanza F. 2003. A PLCγ2-independent platelet collagen aggregation requiring functional association of GPVI and integrin α2β1. FEBS Lett. 542, 53–59.CrossRefGoogle Scholar
  64. 64.
    Andrews R., Suzuki-Inoue K., Shen Y., Tulasne D., Watson S., Berndt M. 2002. Interaction of calmodulin with the cytoplasmic domain of platelet glycoprotein VI. Blood. 99, 4219–4221.CrossRefGoogle Scholar
  65. 65.
    Stephens G., Yan Y., Jandrot-Perrus M., Villeval J., Clemetson K., Phillips D. 2005. Platelet activation induces metalloproteinase-dependent GP VI cleavage to down-regulate platelet reactivity to collagen. Blood. 105, 186–191.CrossRefGoogle Scholar
  66. 66.
    Chin D., Means A. 2000. Calmodulin: A prototypical calcium sensor. Trends Cell Biol. 10, 322–328.CrossRefGoogle Scholar
  67. 67.
    Gilio K., van Kruchten R., Braun A., Berna-Erro A., Feijge M., Stegner D., van der Meijden P., Kuijpers M., Varga-Szabo D., Heemskerk J., Nieswandt B. 2010. Roles of platelet STIM1 and orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation. J. Biol. Chem. 285, 23629–23638.CrossRefGoogle Scholar
  68. 68.
    Gilio K., Munnix I., Mangin P., Cosemans J., Feijge M., van der Meijden P., Olieslagers S., Chrzanowska-Wodnicka M., Lillian R., Schoenwaelder S., Koyasu S., Sage S., Jackson S., Heemskerk J. 2009. Non-redundant roles of phosphoinositide 3-kinase isoforms alpha and beta in glycoprotein VI-induced platelet signaling and thrombus formation. J. Biol. Chem. 284, 33750–33762.CrossRefGoogle Scholar
  69. 69.
    Hussain J., Mahaut-Smith M. 1999. Reversible and irreversible intracellular Ca2+ spiking in single isolated human platelets. J. Physiol. 514, 713–718.CrossRefGoogle Scholar
  70. 70.
    Heemskerk J., Vuist W., Feijge M., Reutelingsperger C., Lindhout T. 1997. Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: Evidence for regulation by protein tyrosine kinase-dependent Ca2+ responses. Blood. 90, 2615–2625.Google Scholar
  71. 71.
    Bergmeier W., Oh-Hora M., McCarl C., Roden R., Bray P., Feske S. 2009. R93W mutation in Orai1 causes impaired calcium influx in platelets. Blood. 113, 675–678.CrossRefGoogle Scholar
  72. 72.
    Jung S., Moroi M., Soejima K., Nakagaki T., Miura Y., Berndt M., Gardiner E., Howes J., Pugh N., Bihan D., Watson S. 2012. Constitutive dimerization of glycoprotein VI (GPVI) in resting platelets is essential for binding to collagen and activation in flowing blood. J. Biol. Chem. 287, 30000–30013.CrossRefGoogle Scholar
  73. 73.
    Jung S., Tsuji K., Moroi M. 2009. Glycoprotein (GP) VI dimer as a major collagen-binding site of native platelets: Direct evidence obtained with dimeric GPVI-specific Fabs. J. Thromb. Haemost. 7, 1347–1355.CrossRefGoogle Scholar
  74. 74.
    Lecut C., Arocas V., Ulrichts H., Elbaz A., Villeval J., Lacapère J., Deckmyn H., Jandrot-Perrus M. 2004. Identification of residues within human glycoprotein VI involved in the binding to collagen: Evidence for the existence of distinct binding sites. J. Biol. Chem. 279, 52293–52299.CrossRefGoogle Scholar
  75. 75.
    Gardiner E., Karunakaran D., Arthur J., Mu F., Powell M., Baker R., Hogarth P., Kahn M., Andrews R., Berndt M. 2008. Dual ITAM-mediated proteolytic pathways for irreversible inactivation of platelet receptors: De-ITAM-izing FcgammaRIIa. Blood. 111, 165–174.CrossRefGoogle Scholar
  76. 76.
    Al-Tamimi M., Grigoriadis G., Tran H., Paul E., Servadei P., Berndt M., Gardiner E., Andrews R. 2011. Coagulation-induced shedding of platelet glycoprotein VI mediated by factor Xa. Blood. 117, 3912–3920.CrossRefGoogle Scholar
  77. 77.
    Al-Tamimi M., Tan C., Qiao J., Pennings G., Javadzadegan A., Yong A., Arthur J., Davis A., Jing J., Mu F.-T., Hamilton J. 2012. Pathologic shear triggers shedding of vascular receptors: A novel mechanism for down-regulation of platelet glycoprotein VI in stenosed coronary vessels. Blood. 119, 4311–4320.CrossRefGoogle Scholar
  78. 78.
    Al-Tamimi M., Arthur J. 2012. Focusing on plasma glycoprotein VI. J. Thromb. Haemost. 108, 648–655.Google Scholar
  79. 79.
    Rabie T., Varga-Szabo D., Bender M., Pozgaj R., Lanza F., Saito T., Watson S., Nieswandt B. 2007. Diverging signaling events control the pathway of GPVI down-regulation in vivo. Blood. 110, 529–535.CrossRefGoogle Scholar
  80. 80.
    Gardiner E., Karunakaran D., Shen Y., Arthur J., Andrews R., Berndt M., 2007. Controlled shedding of platelet glycoprotein (GP)VI and GPIb-IX-V by ADAM family metalloproteinases. J. Thromb. Haemost. 5, 1530–1537.CrossRefGoogle Scholar
  81. 81.
    Arthur J., Qiao J., Shen Y., Davis A., Dunne E., Berndt M., Gardiner E., Andrews R. 2012. ITAM receptor-mediated generation of reactive oxygen species in human platelets occurs via Syk-dependent and Syk-independent pathways. J. Thromb. Haemost. 10, 1133–1141.CrossRefGoogle Scholar
  82. 82.
    Walsh T., Berndt M., Carrim N., Cowman J., Kenny D., Metharom P. 2014. The role of Nox1 and Nox2 in GPVI-dependent platelet activation and thrombus formation. Redox Biol. 2, 178–186.CrossRefGoogle Scholar
  83. 83.
    Arthur J., Gardiner E., Kenny D., Andrews R., Berndt M. 2009. Platelet receptor redox regulation. Platelets. 19, 1–8.CrossRefGoogle Scholar
  84. 84.
    Freedman J. 2008. Oxidative stress and platelets. Arterioscler. Thromb. Vasc. Biol. 28, 11–16.CrossRefGoogle Scholar
  85. 85.
    Arthur J., Shen Y., Gardiner E., Coleman L., Murphy D., Kenny D., Andrews R., Berndt M. 2011. TNF receptor-associated factor 4 (TRAF4) is a novel binding partner of glycoprotein Ib and glycoprotein VI in human platelets. J. Thromb. Haemost. 9, 163–172.CrossRefGoogle Scholar
  86. 86.
    Berndt M., Shen Y. 2001. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb. and Haemost. 86, 178–188.CrossRefGoogle Scholar
  87. 87.
    Bigalke B., Stellos K., Geisler T., Kremmer E., Seizer P., May A., Lindemann S., Gawaz M. 2011. Glycoprotein VI for diagnosis of acute coronary syndrome when ECG is ambiguous. Int. J. Cardiol. 149, 164–168.CrossRefGoogle Scholar
  88. 88.
    Dütting S., Bender M., Nieswandt B. 2012. Platelet GPVI: A target for antithrombotic therapy?! Trends Pharmacol. Sci. 33, 583–590.CrossRefGoogle Scholar
  89. 89.
    Yakimenko A., Verholomova F., Kotova Y., Ataullakhanov F., Panteleev M. 2012. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys. J. 102, 2261–2269.CrossRefGoogle Scholar
  90. 90.
    Abaeva A., Canault M., Kotova Y., Obydennyy S., Yakimenko A., Podoplelova N., Kolyadko V., Chambost H., Mazurov A., Ataullakhanov F., Nurden A. 2013. Procoagulant platelets form an alpha-granule protein-covered “cap” on their surface that promotes their attachment to aggregates. J. Biol. Chem. 288, 29621–29632.CrossRefGoogle Scholar
  91. 91.
    Artemenko E., Yakimenko A., Pichugin A., Ataullakhanov F., Panteleev M. 2016. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidyl-serine-positive platelets. Biochem. J. 473, 435–448.CrossRefGoogle Scholar
  92. 92.
    Agbani E., van den Bosch M., Brown E., Williams C., Mattheij N., Cosemans J., Collins P., Heemskerk J., Hers I., Poole A. 2015. Coordinated membrane ballooning and procoagulant spreading in human platelets. Circulation. 132, 1414–1424.CrossRefGoogle Scholar
  93. 93.
    Choo H., Saafir T., Mkumba L., Wagner M., Jobe S. 2012. Mitochondrial calcium and reactive oxygen species regulate agonist-initiated platelet phosphatidyl-serine exposure. Arterioscler. Thromb. Vasc. Biol. 32, 2946–2955.CrossRefGoogle Scholar
  94. 94.
    Jobe S., Wilson K., Leo L., Raimondi A., Molkentin J., Lentz S., Di Paola J. 2008. Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood. 111, 1257–1265.CrossRefGoogle Scholar
  95. 95.
    Stalker T., Traxler E., Wu J., Wannemacher K., Cermignano S., Voronov R., Diamond S., Brass L. 2013. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood. 121, 1875–1885.CrossRefGoogle Scholar
  96. 96.
    Doggett T., Girdhar G., Lawshe A., Miller J., Laurenzi I., Diamond S., Diacovo T. 2003. Alterations in the intrinsic properties of the GPIb-VWF tether bond define the kinetics of the platelet-type von Willebrand disease mutation, Gly233Val. Blood. 102, 152–160.CrossRefGoogle Scholar
  97. 97.
    Kumar R., Dong J., Thaggard J., Cruz M., López J., McIntire L. 2003. Kinetics of GPIbalpha-vWF-A1 tether bond under flow: Effect of GPIbalpha mutations on the association and dissociation rates. Biophys. J. 85, 4099–4109.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Sveshnikova
    • 1
    • 2
    • 3
  • A. V. Belyaev
    • 1
  • M. A. Panteleev
    • 1
    • 2
    • 3
    • 4
  • D. Y. Nechipurenko
    • 1
    • 2
    • 3
  1. 1.Moscow State University, Department of PhysicsMoscowRussia
  2. 2.Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
  3. 3.Center for Theoretical Problems of Physico-Chemical PharmacologyMoscowRussia
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations