Collapse of Neuronal Energy Balance As a Basis of L-Homocysteine Neurotoxicity

  • L. S. Sitnikova
  • M. A. Ivanova
  • Yu. D. Stepanenko
  • T. V. Karelina
  • R. Giniatullin
  • D. A. Sibarov
  • P. A. Abushik
  • S. M. AntonovEmail author


Using fluorescence detection methods, neurotoxic effects of L-homocysteine (HCY), L-glutamate (Glu), and N-methyl-D-aspartate (NMDA) on primary culture of rat cerebellar neurons were compared and the agonist-evoked intracellular Ca2+ responses and changes in mitochondrial membrane potential were studied. Long-term (5 h) action of HCY, Glu, or NMDA caused neuronal apoptosis and necrosis that was followed by a decrease of quantity of live cells to 40%. It was revealed using Fluo-3 that neurons differed by intracellular Ca2+ responses to 2-min applications of HCY. In response to all studied agonists, a brief peak or gradual increase of intracellular Ca2+ concentration was observed. Some neurons did not respond to HCY, but all responded to Glu and NMDA. A prolonged (60 min) treatment with agonists caused a rapid or delayed Ca2+ overload, while only a small portion of neurons were able to compensate the intracellular Ca2+ elevation. Six-minute applications of HCY or Glu to neurons induced similar changes of mitochondrial potential (φmit) measured by rhodamine123. In this protocol, the ability of the NMDA receptor agonists to cause the mitochondrial dysfunction could be arranged in the following order: NMDA > Glu = HCY. After a 60-min treatment the observed difference vanished because all of the agonists reduced φmit so that an uncoupling agent FCCP did not cause any additional changes in φmit. Thus, HCY-induced neurotoxicity in cerebellar neurons is comparable to that of Glu. In this feature cerebellar neurons differ from cortical neurons, in which HCY did not significantly change φmit during short-term application. This difference could be related with peculiarities of the HCY action on NMDA receptor subtypes expressed by cerebellar neurons.


cerebellum homocysteine glutamate apoptosis calcium mitochondria 



The study of intracellular calcium responses and mitochondrial potential was supported by the Russian Science Foundation (project no. 16-15-10192). The study of neuronal survival was supported by the Russian Foundation for Basic Research (project no. 16-04-00653).


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. Experiments involving animals were performed in accordance to FELASA guidelines and were approved by local regulations of IEPHB RAS.


  1. 1.
    Shi Q., Savage J.E., Hufeisen S.J., Rauser L., Grajkowska E., Ernsberger P., Wroblewski J.T., Nadeau J.H., Roth B.L. 2003. L-homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists. J. Pharmacol. Exp. Ther. 305 (1), 131–142.CrossRefGoogle Scholar
  2. 2.
    Rozen R. 1997. Genetic predisposition to hyperhomocysteinemia: Deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb. Haemost. 78 (1), 523–526.CrossRefGoogle Scholar
  3. 3.
    Sachdev P.S. 2005. Homocysteine and brain atrophy. Prog. Neuropsychopharmacol. Biol. Psychiatry. 29 (7), 1152–1161.CrossRefGoogle Scholar
  4. 4.
    Isobe C., Terayama Y. 2010. A remarkable increase in total homocysteine concentrations in the CSF of migraine patients with aura. Headache. 50 (10), 1561–1569.CrossRefGoogle Scholar
  5. 5.
    Sachdev P. 2004. Homocysteine, cerebrovascular disease and brain atrophy. J. Neurol. Sci. 226 (1–2), 25–29.CrossRefGoogle Scholar
  6. 6.
    Zoccolella S., Bendotti C., Beghi E., Logroscino G. 2010. Homocysteine levels and amyotrophic lateral sclerosis: A possible link. Amyotrophic Lateral Sclerosis. 11 (1–2), 140–147.CrossRefGoogle Scholar
  7. 7.
    Khodorov B. 2004. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog. Biophys. Mol. Biol. 86 (2), 279–351.CrossRefGoogle Scholar
  8. 8.
    Beard R.S. Jr., Reynolds J.J., Bearden S.E. 2011. Hyperhomocysteinemia increases permeability of the blood-brain barrier by NMDA receptor-dependent regulation of adherens and tight junctions. Blood. 118 (7), 2007–2014.CrossRefGoogle Scholar
  9. 9.
    Poddar R., Paul S. 2009. Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J. Neurochem. 124 (4), 558–570.CrossRefGoogle Scholar
  10. 10.
    Yeganeh F., Nikbakht F., Bahmanpour S., Rastegar K., Namavar R. 2013. Neuroprotective effects of NMDA and group I metabotropic glutamate receptor antagonists against neurodegeneration induced by homocysteine in rat hippocampus: In vivo study. J. Mol. Neurosci. 50 (3), 551–557.CrossRefGoogle Scholar
  11. 11.
    Abushik P.A., Niittykoski M., Giniatullina R., Shakirzyanova A., Bart G., Fayuk D., Sibarov D.A., Antonov S.M., Giniatullin R. 2014. The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J. Neurochem. 129 (2), 264–274.CrossRefGoogle Scholar
  12. 12.
    Zhong J., Russell S.L., Pritchett D.B., Molinoff P.B., Williams K. 1994. Expression of mRNAs encoding subunits of the N-methyl-D-aspartate receptor in cultured cortical neurons. Mol. Pharmacol. 45 (5), 846–853.Google Scholar
  13. 13.
    Abushik P.A., Sibarov D.A., Eaton M.J., Skatchkov S.N., Antonov S.M. 2013. Kainate-induced calcium overload of cortical neurons in vitro: Dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium. 54 (2), 95–104.CrossRefGoogle Scholar
  14. 14.
    Paoletti P., Bellone C., Zhou Q. 2013. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14 (6), 383–400.CrossRefGoogle Scholar
  15. 15.
    Akazawa C., Shigemoto R., Bessho Y., Nakanishi S., Mizuno N. 1994. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J. Comp. Neurol. 347 (1), 150–160.CrossRefGoogle Scholar
  16. 16.
    Sibarov D.A., Abushik P.A., Giniatullin R., Antonov S.M. 2016. GluN2A subunit-containing NMDA receptors are the preferential neuronal targets of homocysteine. Front. Cell. Neurosci. 10 (246), doi 10.3389/fncel.2016.00246Google Scholar
  17. 17.
    Jadavji N.M., Wieske F., Dirnagl U., Winter C. 2015. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue. Mol. Genet. Metab. Rep. 3, 1–4.CrossRefGoogle Scholar
  18. 18.
    Hockberger P.E., Tseng H.Y., Connor J.A. 1989. Development of rat cerebellar Purkinje cells: Electrophysiological properties following acute isolation and in long-term culture. J. Neurosci. 9 (7), 2258–2271.CrossRefGoogle Scholar
  19. 19.
    Weber A., Schachner M. 1984. Maintenance of immunocytologically identified Purkinje cells from mouse cerebellum in monolayer culture. Brain Res. 311 (1), 119–130.CrossRefGoogle Scholar
  20. 20.
    Karelina T.V., Stepanenko Yu.D., Abushik P.A., Sibarov D.A., Antonov S.M. 2016. Downregulation of Purkinje cell activity by modulators of small conductance calcium-activated potassium channels in rat cerebellum. Acta Naturae. 8 (3), 91–99.Google Scholar
  21. 21.
    Antonov S.M., Johnson J.W. 1999. Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg2+. Proc. Nat. Acad. Sci. USA. 96 (25), 14571–14576.CrossRefGoogle Scholar
  22. 22.
    Mironova, E.V., Evstratova A.A., Antonov S.M. 2007. A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J. Neurosci. Methods. 163 (1), 1–8.CrossRefGoogle Scholar
  23. 23.
    Sibarov D.A., Bolshakov A.E., Abushik P.A., Krivoi I.I., Antonov S.M. 2012. Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J. Pharmacol. Exp. Ther. 343 (3), 596–607.CrossRefGoogle Scholar
  24. 24.
    Grynkiewicz G., Poenie M., Tsien R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260 (6), 3440–3450.Google Scholar
  25. 25.
    Duchen M.R. 2012. Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflügers Archiv. 464 (1), 111–121.CrossRefGoogle Scholar
  26. 26.
    Mironova E.V., Lukina A.A., Brovtsyna N.B., Krivchenko A.I., Antonov S.M. 2006. Glutamate receptors types defining neurotoxic glutamate action on rat cortex neurons. Zh. Evol. Biokhim. Fiziol. (Rus.). 42 (6), 559–566.Google Scholar
  27. 27.
    Surin A.M., Krasilnikova I.A., Pinelis V.G., Khodorov B.I. 2014. Study of the relationship between glutamate-induced delayed calcium deregulation, mitochondrial depolarization and subsequent neuronal death. Pathogenesis. 12, 40–46.Google Scholar
  28. 28.
    Duchen M.R., Surin A.M. 2002. On the role of mitochondria and calcium in glutamate-induced neurotoxicity in hippocampal neurons in culture. Biol. Membrany (Rus.). 19, 97–109.Google Scholar
  29. 29.
    Prell T., Grosskreutz J. 2013. The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 14 (7–8), 507–515.CrossRefGoogle Scholar
  30. 30.
    Boldyrev A.A., Johnson P. 2007. Homocysteine and its derivatives as possible modulators of neuronal and non-neuronal cell glutamate receptors in Alzheimer’s disease. J. Alzheim. Disease. 11 (2), 219–228.CrossRefGoogle Scholar
  31. 31.
    Kuhn W., Hummel T., Woitalla D., Müller T. 2001. Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology. 56 (2), 281–282.CrossRefGoogle Scholar
  32. 32.
    Valentino F., Bivona G., Butera D., Paladino P., Fazzari M., Piccoli T., Ciaccio M., La Bella V. 2010. Elevated cerebrospinal fluid and plasma homocysteine levels in ALS. Eur. J. Neurol. 17 (1), 84–89.CrossRefGoogle Scholar
  33. 33.
    Abushik P.A., Karelina T.V., Sibarov D.A., Stepa-nenko Y.D., Giniatullin R.A., Antonov S.M. 2015. Homocysteine-induced membrane currents, calcium responses and changes in mitochondrial potential in rat cortical neurons. J. Evol. Biochem. Physiol. 51, 296–304.CrossRefGoogle Scholar
  34. 34.
    Scimemi A., Fine A., Kullmann D.M., Rusakov D.A. 2004. NR2B-containing receptors mediate cross talk among hippocampal synapses. J. Neurosci. 24, 4767–4777.CrossRefGoogle Scholar
  35. 35.
    Hardingham G.E., Bading H. 2010. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696.CrossRefGoogle Scholar
  36. 36.
    Stark D.T., Bazan N.G. 2011. Synaptic and extrasynaptic NMDA receptors differentially modulate neuronal cyclooxygenase-2 function, lipid peroxidation, and neuroprotection. J. Neurosci. 31, 13710–13721.CrossRefGoogle Scholar
  37. 37.
    Misra C., Brickley S.G., Farrant M., Cull-Candy S.G. 2000. Identification of subunits contributing to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum. J. Physiol. 524, 147–162.CrossRefGoogle Scholar
  38. 38.
    Brickley S.G., Misra C., Mok M.H.S., Mishina M., Cull-Candy S.G. 2003. Identification of subunits contributing to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum. J. Neurosci. 23, 4958–4966.CrossRefGoogle Scholar
  39. 39.
    Abushik P.A., Bart G., Korhonen P., Leinonen H., Giniatullina R., Sibarov D.A., Levonen A.L., Malm T., Antonov S.M., Giniatullin R. 2017. Pro-nociceptive migraine mediator CGRP provides neuroprotection of sensory, cortical and cerebellar neurons via multi-kinase signaling. Cephalalgia. 37 (4), 1373–1383.CrossRefGoogle Scholar
  40. 40.
    Ziemińska E., Stafiej A., Łazarewicz J.W. 2003. Role of group I metabotropic glutamate receptors and NMDA receptors in homocysteine-evoked acute neurodegeneration of cultured cerebellar granule neurones. Neurochem. Int. 43, 481–492.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. S. Sitnikova
    • 1
  • M. A. Ivanova
    • 1
  • Yu. D. Stepanenko
    • 1
  • T. V. Karelina
    • 1
  • R. Giniatullin
    • 2
  • D. A. Sibarov
    • 1
  • P. A. Abushik
    • 1
  • S. M. Antonov
    • 1
    Email author
  1. 1.Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.University of Eastern Finland, Department of NeurobiologyKuopioFinland

Personalised recommendations