Participation of Endocytosis in Sodium Ion Uptake by the Cells of Arabidopsis thaliana (L.) Heynh in the Suspension Culture

  • Y. V. OrlovaEmail author
  • O. V. Majorova
  • L. A. Khalilova
  • A. S. Voronkov
  • A. A. Fomenkov
  • A. V. Nosov
  • L. G. Popova
  • Y. V. Balnokin


The involvement of endocytosis in the Na+ ion uptake from the external medium by the cells of suspension culture derived from A. thaliana (Col-0) leaves was investigated. Na+ ion uptake by endocytic structures occurred following the addition of NaCl at the final concentration of 100 mM to the incubation medium. The presence of Na+ in membranous structures was recorded using fluorescence microscopy by colocalization of FM4-64, a marker of endocytosis structures, and Asante NaTRIUM Green-2 TMA+ salt (ANG-2 TMA), a membrane impermeable probe for sodium ions, that enabled the detection of Na+ absorbed by the cells via endocytosis but not through ion channels or transporters of the plasma membrane. Following a 1.5-h incubation of the cells in the presence of NaCl, FM4-64 and ANG-2 TMA, fluorescence of the probes was colocalized in structures with sizes ranging from 800 to 3000 nm. It was shown by electron microscopy that NaCl added to the cell incubation medium stimulated vesiculation and vacuolization of the cytoplasm, formation of plasma membrane invaginations, as well as fusion of microvacuoles with each other. The size of the structures, in which the colocalization of the two probes was detected by fluorescent microscopy, matched the size of the microvacuoles revealed by the electron microscopy. The obtained results indicate the capture of sodium ions contained in the apoplast by endocytosis invaginations, their subsequent internalization by the cells, and transfer into microvacuoles.


salt shock sodium ions endocytosis endosomes fluorescence and transmission electron microscopy Na+ localization in endosomes vesicular transport Arabidopsis 



The work was supported by the Russian Foundation for Basic Research (project no. 15-04-0472-a) and the Russian Science Foundation (project no. 17-14-01099 for A.V. Nosov and A.A. Fomenkov).


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Battey N.H., James N.C., Greenland A.J., Brownlee C. 1999. Exocytosis and endocytosis. Plant Cell. 11, 643–659.CrossRefGoogle Scholar
  2. 2.
    Aniento F., Robinson D. 2005. Testing for endocytosis in plants. Protoplasma. 226, 3–11.CrossRefGoogle Scholar
  3. 3.
    Etxeberria E., Pozueta-Romero J., Baroja Fernández E. 2012. Fluid-phase endocytosis in plant cells. In: Endocytosis in Plants. J. Šamaj, ed. Berlin Heidelberg: Springer–Verlag, p. 107–122.Google Scholar
  4. 4.
    Bandmann V., Homann U. 2012. Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts. Plant J. 70, 578–584.CrossRefGoogle Scholar
  5. 5.
    Mazel A., Leshem Y., Tiwari B.S., Levine A. 2004. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol. 134, 118–128.CrossRefGoogle Scholar
  6. 6.
    Mimura T., Kura-Hotta M., Tsujimura T., Ohnishi M., Miura M., Okazaki Y., Mimura M., Maeshima M., Washitani-Nemoto S. 2003. Rapid increase of vacuolar volume in response to salt stress. Planta. 216, 397–402.Google Scholar
  7. 7.
    Hamaji K., Nagira M., Yoshida K., Ohnishi M., Oda Y., Uemura T., Goh T., Sato M.H., Morita M.T., Tasaka M., Hasezawa S., Nakano A., Hara-Nishimura I., Maeshima M., Fukaki H., Mimura T. 2009. Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiol. 50, 2023–2033.CrossRefGoogle Scholar
  8. 8.
    de la Garma J.G., Fernandez-Garcia N., Bardisi E., Pallol B., Asensio-Rubio J.S., Bru R., Olmos E. 2015. New insights into plant salt acclimation: The roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. New Phytol. 205, 216–239.CrossRefGoogle Scholar
  9. 9.
    Pardo J.M., Cubero B., Leidi E.O., Quintero F.J. 2006. Alkali cation exchangers: Roles in cellular homeostasis and stress tolerance. J. Exp. Bot. 57, 1181–1199.CrossRefGoogle Scholar
  10. 10.
    Bassil E., Ohto M.A., Esumi T., Tajima H., Zhu Z., Cagnac O., Belmonte M., Peleg Z., Yamaguchi T., Blumwald E. 2011. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell. 23, 224–239.CrossRefGoogle Scholar
  11. 11.
    von der Fecht-Bartenbach J.V.D., Bogner M., Krebs M., Stierhof Y.D., Schumacher K., Ludewig U. 2007. Function of the anion transporter AtCLC-d in the trans-Golgi network. Plant J. 50, 466–474.CrossRefGoogle Scholar
  12. 12.
    Shuvalov A.V., Orlova J.V., Khalilova L.A., Myasoedov N.A., Andreev I.M., Belyaev D.V., Balnokin Y.V. 2015. Evindence for the functioning of a Cl/H+ antiporter in the membranes isolated from root cells of the halophyte Suaeda altissima and enriched with Golgi membranes. Rus. J. Plant Physiol. 62, 45–56.CrossRefGoogle Scholar
  13. 13.
    Balnokin Y.V., Kurkova E.B., Khalilova L.A, Myasoedov N. A., Yusufov A. G. 2007. Pinocytosis in the root cells of a salt-accumulating halophyte Suaeda altissima and its possible involvement in chloride transport. Rus. J. Plant Physiol. 54, 797–805.CrossRefGoogle Scholar
  14. 14.
    Krebs M., Beyhl D., Gorlich E., Al-Rasheid K.A.S., Marten I., Stierhof Y.D., Hedrich R., Schumacher K. 2010. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc. Natl. Acad. Sci. USA. 107, 3251–3256.CrossRefGoogle Scholar
  15. 15.
    Niu X., Bressan R.A., Hasegawa P.M., Pardo J.M. 1995. Ion homeostasis in NaCl stress environments. Plant Physiol. 109 (3), 735–742.CrossRefGoogle Scholar
  16. 16.
    Munns R., Tester M. 2007. Mechanisms of salinity tolerance. Plant Biol. 59, 651–681.CrossRefGoogle Scholar
  17. 17.
    Fomenkov A.A., Nosov A.V., Rakitin V.Y., Mamaev, A.S., Novikova G.V. 2014. Cytophysiological characteristics of Arabidopsis thaliana cultivated cells with disable perception of ethylene signal by the ETR1 receptor. Rus. J. Plant Physiol. 61, 598–607.CrossRefGoogle Scholar
  18. 18.
    Roder P., Hille C. 2014. ANG-2 for quantitative Na+ determination in living cells by time-resolved fluorescence microscopy. Photobiochem. Photobiol. Sci. 13, 1699–1710.CrossRefGoogle Scholar
  19. 19.
    Manders E.M.M., Verbeek F.J., Aten J.A. 1993. Measurement of co-localization of objects in dual-colour confocal images. J. Microscopy. 169, 375–382.CrossRefGoogle Scholar
  20. 20.
    Baral A., Shruthi K.S., Mathew M.K. 2015. Vesicular trafficking and salinity responses in plants. IUBMB Life. 67 (9), 677–686.CrossRefGoogle Scholar
  21. 21.
    Baral A., Irani N.G., Fujimoto M., Nakano A., Mayor S., Mathew M.K. 2015. Salt-induced remodeling of spatially restricted clathrin-independent endocytic pathways in Arabidopsis root. Plant Cell. 27, 1297–1315.CrossRefGoogle Scholar
  22. 22.
    Li R., Liu P., Wan Y., Li R., Liu P., Wan Y., Chen T., Wang Q., Mettbach U., Baluska F., Samaj J., Fang X., Lucas W.J., Lin J. 2012. A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell. 24, 2105–2122.CrossRefGoogle Scholar
  23. 23.
    Bhat R.A., Panstruga R. 2005. Lipid rafts in plants. Planta. 223, 5–19.CrossRefGoogle Scholar
  24. 24.
    Urbanus S.L., Ott T. 2012. Plasticity of plasma membrane compartmentalization during plant immune responses. Front. Plant Sci. 3, 181.CrossRefGoogle Scholar
  25. 25.
    Zouhar J., Sauer M. 2014. Helping hands for budding prospects: ENTH/ANTH/VHS accessory proteins in endocytosis, vacuolar transport, and secretion. Plant Cell. 26, 4232–4244.CrossRefGoogle Scholar
  26. 26.
    Li R., Liu P., Wan Y., Chen T., Wang Q., Mettbach U., Baluska F., Samaj J., Fang X., Lucas W.J., Lin J. 2012. A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell. 24, 2105–2122.CrossRefGoogle Scholar
  27. 27.
    Etxeberria E., Pozueta-Romero J., Gonzalez P. 2012. In and out of the plant storage vacuole. Plant Sci. 190, 52–61.CrossRefGoogle Scholar
  28. 28.
    Etxeberria E., Gonzalez P., Pozueta-Romero J. 2005. Sucrose transport into citrus juice cells. Evidence for an endocytic transport system. J. Am. Soc. Hort. Sci. 130, 269–274.Google Scholar
  29. 29.
    Otegui M.S., Spitzer C. 2008. Endosomal functions in plants. Traffic. 9, 1589–1598.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Y. V. Orlova
    • 1
    Email author
  • O. V. Majorova
    • 1
  • L. A. Khalilova
    • 1
  • A. S. Voronkov
    • 1
  • A. A. Fomenkov
    • 1
    • 2
  • A. V. Nosov
    • 1
    • 2
  • L. G. Popova
    • 1
  • Y. V. Balnokin
    • 1
    • 3
  1. 1.Timiryasev Plant Physiology Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  3. 3.Faculty of Biology, Moscow Lomonosov State UniversityMoscowRussia

Personalised recommendations