Mathematical Model of Platelet Intracellular Signaling After Activation by Fucoidan

  • A. A. Martyanov
  • F. A. Balabin
  • A. S. Maiorov
  • E. V. Shamova
  • M. A. Panteleev
  • A. N. Sveshnikova


Blood platelets are the cells responsible for prevention of the blood loss. Fucoidan is a brown algae extract that is known to activate platelets via C-type lectin receptor of the second type. On the other hand, different fucoidans are now considered as perspective immunomodulators. Thus, application of fucoidan as a medicinal drug seems to be contradictory. In this work we studied activation of platelets by fucoidan in silico and in vitro. The computational model describes the behavior of the participants of the fucoidan receptor signaling cascade. The model was validated with available experimental data published earlier. In order to confirm the model predictions, the fucoidan-induced activation of platelets was assessed in flow cytometry and aggregometry experiments. The resultant model describes changes in the activity of tyrosine kinases of Syk and Sarc family and subsequent activation of phospholipase Cγ2. One of the main model prediction is a significant increase in the platelet cytosolic calcium level after the activation by fucoidan. This prediction was confirmed in the experiments. Thus, fucoidan, as a true platelet activator, cannot be applied in therapy.


intracellular signaling computer modeling flow cytometry 



Authors are grateful to Prof. F.I. Ataullakhanov for valuable discussions and advise during the research process, as well as to Dr. N.E. Ustyuzhanina for discussions concerning fucoidan.

The work was supported by the Russian Foundation for Basic Research (project no. 17-54-04009), Belorussian Foundation for Basic Research (project no. B17RM-006), and by the President’s grants for young investigators (project nos. MK-5879.2016.4 and MD-229.2017.4).


Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.


  1. 1.
    Cumashi A., Ushakova N.A., Preobrazhenskaya M.E., D’Incecco A., Piccoli A., Totani L., Tinari N., Morozevich G.E., Berman A.E., Bilan M.I., Usov A.I., Ustyuzhanina N.E., Grachev A.A., Sanderson C.J., Kelly M., Rabinovich G.A., Iacobelli S., Nifantiev N.E. 2007. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology. 17 (5), 541–552.CrossRefGoogle Scholar
  2. 2.
    Ustyuzhanina N.E., Bilan M.I., Gerbst A.G., Ushakova N.A., Tsvetkova E.A., Dmitrenok A.S., Usov A.I., Nifantiev N.E. 2016. Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea. Carbohydr. Polym. 136, 826–833.CrossRefGoogle Scholar
  3. 3.
    Manne B.K., Getz T.M., Hughes C.E., Alshehri O., Dangelmaier C., Naik U.P., Watson S.P., Kunapuli S.P. 2013. Fucoidan is a novel platelet agonist for the C-type lectin-like receptor 2 (CLEC-2). J. Biol. Chem. 288 (11), 7717–7726.CrossRefGoogle Scholar
  4. 4.
    Shirai T., Inoue O., Tamura S., Tsukiji N., Sasaki T., Endo H., Satoh K., Osada M., Sato-Uchida H., Fujii H., Ozaki Y., Suzuki-Inoue K. 2017. C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. J. Thromb. Haemost. 15 (3), 513–525.CrossRefGoogle Scholar
  5. 5.
    Suzuki-Inoue K., Kato Y., Inoue O., Mika KK., Mishima K., Yatomi Y., Yamazaki Y., Narimatsu H., Ozaki Y. 2007. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J. Biol. Chem. 282 (36), 25993–26001.CrossRefGoogle Scholar
  6. 6.
    Suzuki-Inoue K., Inoue O., Ding G., Nishimura S., Hokamura K., Eto K., Kashiwagi H., Tomiyama Y., Yatomi Y., Umemura K., Shin Y., Hirashima M., Ozaki Y. 2010. Essential in vivo roles of the C-type lectin receptor CLEC-2: Embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J. Biol. Chem. 285 (32), 24494–24507.CrossRefGoogle Scholar
  7. 7.
    Sveshnikova A.N., Balatskiy A.V., Demianova A.S., Shepelyuk T.O., Shakhidzhanov S.S., Balatskaya M.N., Pichugin A.V., Ataullakhanov F.I., Panteleev M.A. 2016. Systems biology insights into the meaning of the platelet’s dual-receptor thrombin signaling. J. Thromb. Haemost. 14 (10), 2045–2057.CrossRefGoogle Scholar
  8. 8.
    Gibbins J.M., Mahaut-Smith M.P. 2004. Platelets and megakaryocytes. Vol. 1. Functional assays. New Jersy: Humana Press, Inc.Google Scholar
  9. 9.
    Hindmarsh A.C., Brown P.N., Grant K.E., Lee S.L., Serban R., Shumaker D.E., Woodward C.S. 2005. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31 (3), 363–396.CrossRefGoogle Scholar
  10. 10.
    Pollitt A.Y., Grygielska B., Leblond B., Désiré L., Eble J.A., Watson S.P. 2010. Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization, secondary mediators, and Rac. Blood. 115 (14), 2938–2946.CrossRefGoogle Scholar
  11. 11.
    Nieswandt B., Bergmeier W., Schulte V., Rackebrandt K., Gessner J.E., Zirngibl H. 2000. Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcR gamma chain. J. Biol. Chem., 275 (31), 23998–24002.CrossRefGoogle Scholar
  12. 12.
    Hughes C.E., Pollitt A.Y., Mori J., Eble J.A., Tomlinson M.G., Hartwig J.H., O’Callaghan C.A., Fütterer K., Watson S.P. 2010. CLEC-2 activates Syk through dimerization. Blood. 115 (14), 2947–2955.CrossRefGoogle Scholar
  13. 13.
    Watson A.A., Christou C.M., James J.R., Fenton-May A.E., Moncayo G.E., Mistry A.R., Davis S.J., Gilbert R.J.C., Chakera A., O’Callaghan C.A. 2009. The platelet receptor CLEC-2 is active as a dimer. Biochemistry. 48 (46), 10988–10996.CrossRefGoogle Scholar
  14. 14.
    Pollitt A.Y., Poulter N.S., Gitz E., Navarro-Nuñez L., Wang Y.J., Hughes C.E., Thomas S.G., Nieswandt B., Douglas M.R., Owen D.M., Jackson D.G., Dustin M.L., Watson S.P. 2014. Syk and src family kinases regulate c-type lectin receptor 2 (clec-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells. J. Biol. Chem. 289 (52), 35695–35710.CrossRefGoogle Scholar
  15. 15.
    Hughes C.E., Sinha U., Pandey A., Eble J.A., O’Callaghan C.A., Watson S.P. 2013. Critical role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J. Biol. Chem. 288 (7), 5127–5135.CrossRefGoogle Scholar
  16. 16.
    Hughes C.E., Finney B.A., Koentgen F., Lowe K.L., Watson S.P. 2015. The N-terminal SH2 domain of Syk is required for (hem) ITAM, but not integrin, signaling in mouse platelets. Blood. 125 (1), 144–155.CrossRefGoogle Scholar
  17. 17.
    Severin S., Pollitt A.Y., Navarro-Nunez L., Nash C.A., Mourao-Sa D., Eble J.A., Senis Y.A., Watson S.P. 2011. Syk-dependent phosphorylation of CLEC-2: A novel mechanism of hem-immunoreceptor tyrosine-based activation motif signaling. J. Biol. Chem. 286 (6), 4107–4116.CrossRefGoogle Scholar
  18. 18.
    Jin L.L., Wybenga-Groot L.E., Tong J., Taylor P., Minden M.D., Trudel S., McGlade C.J., Moran M.F. 2015. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity. Mol. Cell. Proteomics. 14 (3), 695–706.CrossRefGoogle Scholar
  19. 19.
    Bradshaw J.M. 2010. The Src, Syk, and Tec family kinases: Distinct types of molecular switches. Cell. Signal. 22 (8), 1175–1184.CrossRefGoogle Scholar
  20. 20.
    Pasquet J.M., Gross B., Quek L., Asazuma N., Zhang W., Sommers C.L., Schweighoffer E., Tybulewicz V., Judd B., Lee J.R., Koretzky G., Love P.E., Samelson L.E., Watson S.P. 1999. LAT is required for tyrosine phosphorylation of phospholipase cgamma2 and platelet activation by the collagen receptor GPVI. Mol. Cell. Biol. 19 (12), 8326–8334.CrossRefGoogle Scholar
  21. 21.
    Gibbins J.M., Briddon S., Shutes A., Van Vugt M.J., Van De Winkel J.G.J., Saito T., Watson S.P. 1998. The p85 subunit of phosphatidylinositol 3-kinase associates with the Fc receptor γ-chain and linker for activitor of T cells (LAT) in platelets stimulated by collagen and convulxin. J. Biol. Chem. 273 (51), 34437–34443.CrossRefGoogle Scholar
  22. 22.
    Moroi A.J., Watson S.P. 2015. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: Haemostasis, platelet activation and antithrombotic therapy. Biochem. Pharmacol. 94 (3), 186–194.CrossRefGoogle Scholar
  23. 23.
    Baldassare J.J., Henderson P.A., Fisher G.J. 1989. Isolation and characterization of one soluble and two membrane-associated forms of phosphoinositide-specific phospholipase C from human platelets. Biochemistry. 28, 6010–6016.CrossRefGoogle Scholar
  24. 24.
    Dinh M., Grunberger D., Ho H., Tsing S.Y., Shaw D., Lee S., Barnett J., Hill R.J., Swinney D.C., Bradshaw J.M. 2007. Activation mechanism and steady state kinetics of bruton’s tyrosine kinase. J. Biol. Chem. 282 (12), 8768–8776.CrossRefGoogle Scholar
  25. 25.
    Rhee S.G., Bae Y.S. 1997. Regulation of phosphoinositide specific phospholipase C isozymes. J. Biol. Chem. 272 (24), 15045–15048.CrossRefGoogle Scholar
  26. 26.
    Musumeci L., Kuijpers M.J., Gilio K., Hego A., Theatre E., Maurissen L., Vandereyken M., Diogo C.V., Lecut C., Guilmain W., Bobkova E.V., Eble J.A., Dahl R., Drion P., Rascon J., Mostofi Y., Yuan H., Sergienko E., Chung T.D.Y., Thiry M., Senis Y., Moutschen M., Mustelin T., Lancellotti P., Heemskerk J.W.M., Tautz L., Oury C., Rahmouni S. 2015. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis. Circulation. 131 (7), 656–668.CrossRefGoogle Scholar
  27. 27.
    Suzuki-Inoue K., Tulasne D., Shen Y., Bori-Sanz T., Inoue O., Jung S.M., Moroi M., Andrews R.K., Berndt M.C., Watson S.P. 2002. Association of Fyn and Lyn with the proline-rich domain of glycoprotein VI regulates intracellular signaling. J. Biol. Chem. 277 (24), 21561–21566.CrossRefGoogle Scholar
  28. 28.
    Alonso A., Rahmouni S., Williams S., van Stipdonk M., Jaroszewski L., Godzik A., Abraham R.T., Schoenberger S.P., Mustelin T. 2003. Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nat. Immunol. 4 (1), 44–48.CrossRefGoogle Scholar
  29. 29.
    Goutelle S., Maurin M., Rougier F., Barbaut X., Bourguignon L., Ducher M., Maire P. 2008. The Hill equation: A review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol. 22 (6), 633–648.CrossRefGoogle Scholar
  30. 30.
    Dunster J.L., Mazet F., Fry M.J., Gibbins J.M., Tindall M.J. 2015. Regulation of early steps of GPVI signal transduction by phosphatases: A systems biology approach. PLoS Comput. Biol. 11 (11), 1–26.CrossRefGoogle Scholar
  31. 31.
    Sklar L.A., Jesaitis A.J., Painter R.G., Cochrane C.G. 1981. The kinetics of neutrophil activation. The response to chemotactic peptides depends upon whether ligand–receptor interaction is rate-limiting. J. Biol. Chem. 256 (19), 9909–9914.Google Scholar
  32. 32.
    Michelson A.D. 2013. Platelets. London: Elsevier.Google Scholar
  33. 33.
    Akinleye A., Chen Y., Mukhi N., Song Y., Liu D. 2013. Ibrutinib and novel BTK inhibitors in clinical development. J. Hematol. Oncol. 6, 59.CrossRefGoogle Scholar
  34. 34.
    Tsang E., Giannetti A.M., Shaw D., Dinh M., Tse J.K.Y., Gandhi S., Ho A., Wang S., Papp E., Bradshaw J.M. 2008. Molecular mechanism of the Syk activation switch. J. Biol. Chem. 283 (47), 32650–32659.CrossRefGoogle Scholar
  35. 35.
    Manne B.K., Badolia R., Dangelmaier C., Eble J.A., Ellmeier W., Kahn M., Kunapuli S.P. 2015. Distinct pathways regulate Syk protein activation downstream of immune tyrosine activation motif (ITAM) and hemITAM receptors in platelets. J. Biol. Chem. 290 (18), 11557–11568.CrossRefGoogle Scholar
  36. 36.
    Watson S.P., Herbert J.M.J., Pollitt A.Y. 2010. GPVI and CLEC-2 in hemostasis and vascular integrity. J. Thromb. Haemost. 8 (7), 1456–1467.CrossRefGoogle Scholar
  37. 37.
    Tiganis T., Bennett A.M. 2007. Protein tyrosine phosphatase function: The substrate perspective. Biochem. J. 402 (1), 1–15.CrossRefGoogle Scholar
  38. 38.
    Sveshnikova A.N., Ataullakhanov F.I., Panteleev M.A. 2015. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1. Mol. BioSyst. 11 (4), 1052–1060.CrossRefGoogle Scholar
  39. 39.
    Burkhart J.M., Vaudel M., Gambaryan S., Radau S., Walter U., Martens L., Geiger J., Sickmann A., Zahedi R.P. 2012. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood. 120 (15), e73–e82.CrossRefGoogle Scholar
  40. 40.
    Eckly A., Rinckel J.Y., Proamer F., Ulas N., Joshi S., Whiteheart S.W., Gachet C. 2016. Respective contributions of single and compound granule fusion to secretion by activated platelets. Blood. 128 (21), 2538–2549.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Martyanov
    • 1
    • 2
    • 3
  • F. A. Balabin
    • 1
  • A. S. Maiorov
    • 1
    • 2
    • 3
  • E. V. Shamova
    • 4
  • M. A. Panteleev
    • 1
    • 2
    • 3
  • A. N. Sveshnikova
    • 1
    • 2
    • 3
  1. 1.Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Physics, Moscow Lomonosov State UniversityMoscowRussia
  3. 3.National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry RogachevMoscowRussia
  4. 4.Belarusian State University, Faculty of Physics, Department of BiophysicsMinskBelarus

Personalised recommendations